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From green networking to network virtualization:
some interesting problems arising from

telecommunication applications.

Bernardetta Addis

Universitè de Lorraine

Abstract

Telecommunication networks and,more broadly,information and communication tech-
nology (ICT),are integral components to the optimization community.
In this talk,we introduce optimization problems we have tackled in collaboration with
telecommunication experts over the past decade. The first half focuses on energy-
aware network management, highlighting the importance of efficient routing and dy-
namic device switching. This approach is crucial for reducing energy consumption
without compromising quality of service (QoS).
The second part of the presentation explores a problem arising from the convergence
of network and computing systems: the placement and routing of Virtual Network Func-
tions (VNFs). This second application involves a novel combination of network design
and facility location optimization. Our contributions include mathematical program-
ming models,a comprehensive analysis of their performance in a realistic setting,and
a comparative analysis of its computational complexity compared to current state-of-
the-art formulations.

Date: Monday 11 March 2024
Time: 9:30–10:30
Location: Q014
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Self-adjusting networks

Stefan Schmid

TU Berlin

Abstract

In this talk, I will present the vision of self-adjusting networks: networks ("graphs")
which are optimized towards, and "match", the traffic workload they serve. These net-
works find applications for example in datacenters: Over the last years, the bandwidth
and latency requirements of modern datacenter applications have led researchers to
propose various datacenter topology designs using static, dynamic demand-oblivious
(rotor),and/or dynamic demand-aware switches. However,given the diverse nature of
datacenter traffic,there is little consensus about how these designs would fare against
each other. We will discuss information-theoretic metrics to quantify the structure in
communication traffic as well as the achievable performance in datacenter networks
matching their demands,present network optimization principles accordingly,and iden-
tify open research challenges. I will also show how the notions of self-adjusting net-
works and demand-aware graphs relate to classic optimization problems in theoretical
computer science

Date: Tuesday 12 March 2024
Time: 9:30–10:30
Location: Q014
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Benders Adaptive-CutsMethod Applied to Network
Design and Facility Location Problems Under

Uncertainty

Ivana Ljubic

ESSEC Business School

Abstract

Benders decomposition is one of the most applied methods to solve two-stage stochas-
tic problems (TSSP) with a large number of scenarios. The main idea behind the Ben-
ders decomposition is to solve a large problem by replacing the values of the second-
stage subproblems with individual variables and progressively forcing those variables
to reach the optimal value of the subproblems, dynamically inserting additional valid
constraints, known as Benders cuts. Most traditional implementations add a cut for
each scenario (multicut) or a single cut that includes all scenarios. In this talk,we present
a novel Benders adaptive-cuts method,where the Benders cuts are aggregated accord-
ing to a partition of the scenarios, which is dynamically refined using the LP-dual in-
formation of the subproblems. This scenario aggregation/disaggregation is based on
the Generalized Adaptive Partitioning Method, which has been successfully applied
to TSSPs. Our new method can be interpreted as a compromise between the Benders
single-cuts and multicuts methods,drawing on the advantages of both sides,by render-
ing the initial iterations faster (as for the single-cuts Benders) and ensuring the over-
all faster convergence (as for the multicuts Benders). We will demonstrate how Ben-
ders adaptive-cuts can be applied to the Stochastic Multi-Commodity Network Design
Problem and the conditional value-at-risk (CVaR) Facility Location Problem. The new
method outperforms the other implementations of Benders methods, as well as other
standard methods for solving TSSPs,in particular when the number of scenarios is very
large. Moreover, our study demonstrates that the method is not only effective for the
risk-neutral decision makers,but also that it can be used in combination with the risk-
averse CVaR objective.
Reference: C. Ramirez-Pico, I. Ljubic, E. Moreno: Benders Adaptive-Cuts Method for
Two-Stage Stochastic Programs,Transportation Science,online first,(2023),
https://doi.org/10.1287/trsc.2022.0073

Date: Wednesday 13 March 2024
Time: 9:30–10:30
Location: Q014
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Buildings as Smart Grid Network Components

ScottMcDonald andKanika Sharma

Eaton

Abstract

Tutorial Abstract: Buildings are becoming energy hubs. Building owners and opera-
tors need to be prepared for the future and meet new regulations â=C“ design future
buildings,integrate EV chargers or leverage renewable energy produced on-site while
managing the energy flows and planning power capacity. Reducing emissions to miti-
gate climate change is fast becoming law across Europe. The switch to electric vehicles
and on-site energy generation are part of the response, and this means integrating as-
sets such as EV chargers,solar PV,and energy storage systems into buildings.
As buildings become energy hubs,Building Energy Management Software is needed to
help the building manager reduce energy costs and CO2 emissions by collecting and
analyzing data, and predicting and managing energy flows. This talk will specifically
focus on analyzing the available data from hardware assets and using an optimizer to
solve for the best control strategy of the controllable assets including battery energy
storage system and diesel generators. We will discuss the modeling process of fore-
casting building load,PV production and EV load along with the design of the optimizer.
The optimizer produces an optimized schedule for a customised horizon (e.g., next 24
hours) by constructing and solving mathematical models while still meeting energy
demands and the objectives.

Date: Monday 11 March 2024
Time: 14:00–15:00
Location: Q014

INOC 2024 6 Dublin,11–13 March 2024



OptimizationMethods for Large-scale Cell-free
MassiveMIMO

NamTran, University College Dublin,
University College Dublin

Abstract

The speedy rollout of 5G networks across the globe over the past two years simply
means now is the right time to envision what 6G looks like. Although 5G networks can
support high data rates,beyond-5G/6G networks will need a paradigm shift in wireless
access technologies to keep pace with the anticipated traffic explosion. In this talk I
will introduce some fundamentals of cell-free massive multiple-input multiple-output
(CFmMIMO) technology, which has been proposed as a solution to the inherent limi-
tations of cellular systems and is considered to be a disruptive technology for beyond-
5G/6G wireless networks. Without cell boundaries, CFmMIMO can offer uniformly
good service for all users across the network.
This presentation will specifically focus on the design of CFmMIMO system from an
optimization perspective. Due to the relatively small number of antennas per access
point (AP),CFmMIMO typically requires a substantially large number of APs. This leads
to large-scale resource allocation problems,calling for novel scalable methods to make
CFmMIMO more practically feasible. In this context, I will introduce specific power
control problems arising from CFmMIMO, describe associated challenges, and then
showcase some of the current methodologies developed to achieve high-performance
solutions.

Date: Tuesday 12 March 2024
Time: 14:00–15:00
Location: Q014

INOC 2024 7 Dublin,11–13 March 2024
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Enhancing the resilience of telecommunication networks through
geodiversification

José Alves1, Maria Teresa Godinho2, and Marta Pascoal3

1Department of Engineering, Polytechnic Institute of Beja, Portugal, � 22424@stu.ipbeja.pt
2Department of Mathematical and Physical Sciences, Polytechnic Institute of Beja, Portugal; Cmaf-cIO, University of

Lisbon, Portugal, � mtgodinho@ipbeja.pt
3Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy; Universidade de Coimbra;

INESC-Coimbra, Portugal, � marta.brazpascoal@polimi.it

The resilience of a system can be defined as the ability to prepare for and adapt to changing conditions
and withstand and recover rapidly from disruptions. Resilience includes the ability to withstand and
recover from deliberate attacks, accidents, or naturally occurring threats or incidents [3]. A resilient
telecommunications network is, therefore, a network that is both prepared and quick to recover from
disruption. A survey on this topic can be found in [4]. One way to increase the preparedness of a resilient
network is to guarantee the existence of alternative paths linking origins and destinations. In fact, if at
least one of the alternative paths survives the disruption, it is ensured that the flow of communication
prevails. When dealing with disasters that may impact on large areas of a terrain, such as natural
disasters, this translates into imposing a safety geographical distance between the paths.

Recently, Godinho and Pascoal [2] addressed the problem of finding K shortest paths between two
nodes, such that each pair of these paths is separated by a distance of at least D, for a given integer K ≥ 2
and a given D > 0. This problem is named the K-D Geodiverse Shortest Path Problem (KD-GPaths
problem). However, when dealing with real world networks, it is not rare that no feasible solution of this
problem exists for some target value of D. In such case, a set of K alternative paths as geodiverse as
possible should be sought, alternatively. This new problem, already studied in [1], aims at determining
the maximum value of D for which a feasible solution of the KD-GPaths problem exists. The new problem
is named the Maximum Distance between K ≥ 2 Paths Problem (MG-KPaths problem).

In this talk we address the MG-KPaths problem by means of both exact and approximated methods.
Two new Integer Linear Programming models are introduced and compared theoretically, and a new
improvement heuristic is described. Computational results are presented for the three approaches.

References
[1] A. de Sousa, D. Santos, and P. Monteiro. Determination of the minimum cost pair of D-geodiverse

paths. In DRCN 2017-Design of Reliable Communication Networks; 13th International Conference,
pages 1–8, 2017.

[2] M. T. Godinho and M. Pascoal. Implementation of geographic diversity in resilient telecommunication
networks. In J. P. Almeida et al., editor, Operational Research, page To appear, Cham, 2024. Springer
International Publishing.

[3] Committee on National Security Systems. Committee on national security systems (CNSS) glossary.
https://www.niap-ccevs.org/Ref/CNSSI_4009.pdf, March 2022. Accessed on 2023-11-30.

[4] J. Rak, R. Girão-Silva, T. Gomes, G. Ellinas, B. Kantarci, and M. Tornatore. Disaster resilience of
optical networks: State of the art, challenges, and opportunities. Optical Switching and Networking,
42:100619, 2021.
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ABSTRACT
This paper investigates the problem of the survivable traffic groom-
ing, routing, and wavelength assignment (GRWA) subject to the
no-loop and optical channel (OCh) length constraints. To the best
of our knowledge, this complex problem has not been previously
studied in the literature. We propose a novel length-constraint and
no-loop Dijkstra algorithm, which helps to compute the primary
and backup paths for traffic demands based on the augmented-layer
graph (ALG). We conduct numerical experiments on both small and
large-scale networks and demonstrate the superior efficiency of our
approach compared to the results obtained from the integer linear
programming formulation, which is solved by the SCIP solver.

KEYWORDS
Survivable Traffic Grooming, No-loop Constraint, OCh Length Con-
straint, Augmented-Layer Graph, LCNL-Dijkstra Algorithm, Tabu
Search

1 INTRODUCTION
Thewavelength divisionmultiplexing (WDM) [13],[15] in an optical
network is a widely used technology that multiplexes a number of
traffic demands onto a single fiber by using different wavelengths.
To further improve the bandwidth utilization of the WDM net-
work, the traffic grooming technique has been proposed. The traffic
grooming technique packs different traffic demands onto a wave-
length using optical-electrical-optical (OEO) converters. Therefore,
it can significantly enhance the fiber capacity and pave the way for
the development of optical networks. In the WDM network with

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-095-0 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

the traffic grooming, an optical channel (OCh) is a lightpath, which
consists of a collection of consecutive fibers that share the same
wavelength channel. An OCh originates and terminates at stations
with OEO converters.

In an optical network, the failure of a single link can disrupt nu-
merous OChs and connections. Therefore, the survivability in the
optical network, which assigns not only the primary path but also
the backup path for traffic demands, has been developed as refer-
enced in [13], where the authors have introduced a comprehensive
set of protection schemes, including the dedicated link protection,
the shared link protection, the dedicated path protection, and the
shared path protection. For the high utility of resources, we focus
on the shared path-based protection scheme.

In the context of the industry, unnecessary resource wastage,
transmission delay, and signal attenuation are intolerable to en-
terprise customers. Hence, we must consider two important con-
straints, including the no-loop constraint and the Och length con-
straint. To further explain, the no-loop constraint also called the
simple path constraint in [10] is that the physical path for each
demand does not contain any cycles to avoid unnecessary transmis-
sion delays. Moreover, we need to consider the length constraint
because of the signal attenuation that occurs within an OCh, and
the total attenuation or loss is and nonlinearly related to the dis-
tance of fibers composing the OCh [7]. To model the attenuation
more conveniently, we could set a threshold for the length of an
och to represent an accepted attenuation degree.

Due to the high cost of OEO converters and the fact that each
OCh requires two converters, our objective is to minimize the
number of OChs needed to satisfy a given set of traffic demands
while adhering to the shared path protection scheme under the no-
loop constraint and the OCh length constraint. We denote the above
problem as the survivable multi-constraint traffic grooming (SMTG)
problem. Numerous studies have demonstrated a strong interest

Session 1A: Telecommunication Networks
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in the area of the survivable traffic grooming. Authors of [1, 6, 12]
have proposed different survivable schemes and objectives with no
constraints. In the work of Naser et al. [9], a delay-constrained and
survivable scheme is proposed, but it cannot apply to our problem
as it focuses on minimizing delay time and resource utilization.

In order to solve the SMTG problem, an integer programming
problem (ILP) is formulated. However, obtaining the exact solution
is challenging since the scale of variables and constraints in the prob-
lem can be as large as billions or even more. As a result, we present
a novel heuristic algorithm, specifically the augmented-layer graph-
based heuristic algorithm, herein referred to as the SMTG-ALGB
algorithm. The main framework comprises the construction of the
augmented-layer graph (ALG), the primary grooming procedure,
the primary tabu search algorithm, the backup grooming proce-
dure, and the backup tabu search algorithm. A crucial component
of our grooming algorithm is the length-constraint and no-loop
Dijkstra (LCNL-Dijkstra) algorithm based on the ALG, which ef-
ficiently tackles the constraints in the SMTG problem. Ultimately,
we performed multiple experiments to compare the results of both
the ILP formulation and the heuristic algorithm on two artificially-
constructed networks and two large-scale, practical networks. The
results of our experiments indicate that our novel heuristic algo-
rithm is notably efficient and effective, even when confronted with
extensive networks containing hundreds of demands, nodes, and
links.

2 PROBLEM STATEMENT
The two-layer network structure[5, 8] models the entire WDM net-
work, consisting of both operational OChs and nodes with OEO
converting ability. The physical layer represents the original net-
work, including the physical links and nodes, while the virtual layer
models the virtual nodes with OEO converting ability, OEO con-
verters installed on the virtual nodes and established OChs. In Fig.1,
an OCh connecting the virtual nodes 1 and 3 is routed by physical
nodes 1, 4, and 3 with the red wavelength in the physical layer.
From the perspective of the two-layer network, we can formulate
the ILP for the SMTG problem below.

Figure 1: Two-layer network example

2.1 Notation used
In our formulations, wewill use the following symbols and variables
in TABLE 1 and TABLE 2.

Table 1: Notations

Symbols Description
𝑉1 The set of physical nodes in the network.
𝐸 The set of bidirectional physical links.
𝐸 (𝑣1) The set of physical links whose nodes contains 𝑣1.
Λ The set of available wavelengths, e.g. {1, 2, · · · , 80}.
𝑉2 The set of virtual nodes.
𝑃𝑖 𝑗 The set of physical paths connecting virtual nodes

𝑖 and 𝑗 , where the overall physical length of each
element of 𝑃𝑖 𝑗 adheres to the length constraint.

𝑝, 𝑃 The physical path and the whole set, 𝑝 ∈ 𝑃 = ∪𝑃𝑖 𝑗 .
ℎ
𝑝
𝑒 ℎ

𝑝
𝑒 = 1 if a path 𝑝 uses the link 𝑒; ℎ𝑝𝑒 = 0 if not.

𝑟+ (𝑝), 𝑟− (𝑝) Two directional paths contained in 𝑝 .
𝑅 The set of directional paths.
𝐼𝑛𝑅(𝑣2) The set of directional paths terminating at 𝑣2 ∈ 𝑉2.
𝑂𝑢𝑡𝑅(𝑣2) The set of directional paths originating at 𝑣2 ∈ 𝑉2.
(𝑝, 𝜆) Bidirectional OCh with path 𝑝 and wavelength 𝜆.
(𝑟, 𝜆) Directional OCh with path 𝑟 and wavelength 𝜆.
𝑑 A bidirectional demand.
𝐷 The set of bidirectional demands.
𝑠𝑑 The original node of the demand 𝑑 .
𝑡𝑑 The terminal node of the demand 𝑑 .
𝐵𝑑 The bandwidth of the demand 𝑑 .
𝑏𝑑𝑗 𝑏𝑑𝑗 = −1, if 𝑗 = 𝑠𝑑 ; 𝑏𝑑𝑗 = 1, if 𝑗 = 𝑡𝑑 ;

𝑏𝑑𝑗 = 0, otherwise.
𝐶 The bandwidth for a wavelength channel.

Table 2: Variables

Var. Description

𝑧𝑝,𝜆 𝑧𝑝,𝜆 = 1, if OCh (𝑝, 𝜆) is established; 𝑧𝑝,𝜆 = 0, otherwise.
𝑥𝑑
𝑝,𝜆

𝑥𝑑
𝑝,𝜆

= 1, if the primary path of the bidirectional demand 𝑑
uses the OCh (𝑝, 𝜆); 𝑥𝑑

𝑝,𝜆
= 1, otherwise.

𝑥𝑑
𝑟,𝜆

𝑥𝑑
𝑟,𝜆

= 1, if the primary path of a directional demand which
is contained in the bidirectional demand 𝑑 and from 𝑠𝑑 to
𝑡𝑑 uses the directional OCh (𝑟, 𝜆); 𝑥𝑑

𝑟,𝜆
= 0, otherwise.

𝑦𝑑
𝑝,𝜆

𝑦𝑑
𝑝,𝜆

= 1, if the backup path of a bidirectional demand 𝑑
uses the OCh (𝑝, 𝜆). 𝑦𝑑

𝑝,𝜆
= 0, otherwise.

𝑦𝑑
𝑟,𝜆

𝑦𝑑
𝑟,𝜆

= 1, if the backup path of a directional demand which
is contained in the bidirectional demand 𝑑 and from 𝑠𝑑 to
𝑡𝑑 uses the directional OCh (𝑟, 𝜆); 𝑦𝑑

𝑟,𝜆
= 0, otherwise.

𝑤𝑑,𝑒
𝑝,𝜆

𝑤𝑑,𝑒
𝑝,𝜆

= 1, if physical link 𝑒 has a failure, the demand 𝑑
is influenced and its backup path uses OCh (𝑝, 𝜆);
𝑤𝑑,𝑒
𝑝,𝜆

= 0, otherwise.

2.2 ILP formulation for minimizing the OCh
usage

Objective function:

Minimize :
{𝑧𝑝,𝜆 },{𝑥𝑑

𝑝,𝜆
},{𝑥𝑑

𝑟,𝜆
}

{𝑦𝑑
𝑝,𝜆
},{𝑦𝑑

𝑟,𝜆
},{𝑤𝑑,𝑒

𝑝,𝜆
}

∑︁
𝑝∈𝑃

∑︁
𝜆∈Λ

𝑧𝑝,𝜆 (1)

Session 1A: Telecommunication Networks

INOC 2024 11 Dublin,11–13 March 2024



Survivable Traffic Grooming with Practical Constraints in Large-Scale Optical Network INOC 2024, March 11 - 13, 2024, Dublin, Ireland

Constraints:

∑︁
𝑟 ∈𝐼𝑛𝑅 (𝑣2 )

𝜆∈Λ

𝑥𝑑𝑟,𝜆 −
∑︁

𝑟 ∈𝑂𝑢𝑡𝑅 (𝑣2 )
𝜆∈Λ

𝑥𝑑𝑟,𝜆 = 𝑏𝑑𝑣2 ,∀𝑑 ∈ 𝐷, 𝑣2 ∈ 𝑉2,

𝑥𝑑𝑝,𝜆 = 𝑥𝑑𝑟+ (𝑝 ),𝜆 + 𝑥𝑑𝑟 − (𝑝 ),𝜆,∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝜆 ∈ Λ.
(2)

∑︁
𝑟 ∈𝐼𝑛𝑅 (𝑣2 )

𝜆∈Λ

𝑦𝑑𝑟,𝜆 −
∑︁

𝑟 ∈𝑂𝑢𝑡𝑅 (𝑣2 )
𝜆∈Λ

𝑦𝑑𝑟,𝜆 = 𝑏𝑑𝑣2 ,∀𝑑 ∈ 𝐷, 𝑣2 ∈ 𝑉2,

𝑦𝑑𝑝,𝜆 = 𝑦𝑑𝑟+ (𝑝 ),𝜆 + 𝑦𝑑𝑟 − (𝑝 ),𝜆,∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝜆 ∈ Λ.
(3)

∑︁
𝜆∈Λ

∑︁
𝑝∈𝑃

∑︁
𝑒∈𝐸 (𝑣1 )

ℎ
𝑝
𝑒 𝑥
𝑑
𝑝,𝜆 ≤ 2,∀𝑑 ∈ 𝐷, 𝑣1 ∈ 𝑉1, (4)

∑︁
𝜆∈Λ

∑︁
𝑝∈𝑃

∑︁
𝑒∈𝐸 (𝑣1 )

ℎ
𝑝
𝑒𝑦
𝑑
𝑝,𝜆 ≤ 2,∀𝑑 ∈ 𝐷, 𝑣1 ∈ 𝑉1, (5)

∑︁
𝜆∈Λ

∑︁
𝑝∈𝑃

ℎ
𝑝
𝑒 𝑥
𝑑
𝑝,𝜆 +

∑︁
𝜆∈Λ

∑︁
𝑝∈𝑃

ℎ
𝑝
𝑒𝑦
𝑑
𝑝,𝜆 ≤ 1 (6)

for ∀𝑑 ∈ 𝐷, 𝑒 ∈ 𝐸,
∑︁
𝑝∈𝑃

ℎ
𝑝
𝑒 𝑧
𝑝,𝜆 ≤ 1,∀𝑒 ∈ 𝐸, 𝜆 ∈ Λ, (7)

∑︁
𝑑∈𝐷

𝐵𝑑 (1 − ℎ𝑝𝑒 )𝑥𝑑𝑝,𝜆 +
∑︁
𝑑∈𝐷

𝐵𝑑𝑤
𝑑,𝑒
𝑝,𝜆
≤ 𝐶 (1 − ℎ𝑝𝑒 )𝑧𝑝,𝜆 (8)

for ∀𝑒 ∈ 𝐸, 𝑝 ∈ 𝑃, 𝜆 ∈ Λ,

𝑤𝑑,𝑒
𝑝,𝜆
≤

∑︁
𝑝′∈𝑃

∑︁
𝜆′∈Λ

ℎ
𝑝′
𝑒 𝑥

𝑑
𝑝′,𝜆′ , 𝑤

𝑑,𝑒
𝑝,𝜆
≤ 𝑦𝑑𝑝,𝜆,

𝑤𝑑,𝑒
𝑝,𝜆
≥ ©­

«
∑︁
𝑝′∈𝑃

∑︁
𝜆′∈Λ

ℎ
𝑝′
𝑒 𝑥

𝑑
𝑝′,𝜆′

ª®
¬
+ 𝑦𝑑𝑝,𝜆 − 1

(9)

for ∀𝑒 ∈ 𝐸,𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝜆 ∈ Λ.
The objective function (1) will count the total used OChs. Flow

constraints (2) and (3) ensure that the paths of demands are feasible
in the virtual layer. No-loop constraints (4) and (5) are required
for physical paths of demands. Even though the OCh paths of
demands have no loops, the whole physical path can still have them
due to the diverse routing of each OCh. In order to ensure that
the primary and backup paths are disjoint in the physical layer,
constraint (6) is imposed. Furthermore, different OChs must utilize
distinct wavelength channels on the same link, as represented by
constraint (7). To ensure that traffic demands do not exceed the
bandwidth allotted to each OCh, constraint (8) is included. The
linearization of the auxiliary variables is given by constraint (9)
according to the description of𝑤𝑑,𝑒

𝑝,𝜆
.

Even though the ILP is a precise formulation and will give an
exact solution, practical difficulties may arise when dealing with
a large-scale network due to numerous variables and constraints.
As an illustration, in a network comprised of 65 nodes, 96 links,
20 wavelength channels, and 122 demands, the combined number
of variables and constraints generated by the associated ILP may
exceed five billion.

3 HEURISTIC APPROACH
The general survivable traffic GRWA is NP-hard [12], and the addi-
tional constraints imposed in our proposed SMTG problem, namely
the no-loop and OCh length constraints, increase its computational
complexity. In light of this, the ILP formulation also suggests that
the problem will be challenging to solve optimally. Consequently,
a heuristic approach becomes necessary, and we devise the SMTG-
ALGB algorithm.

In the upcoming subsections, any symbols that have not been
given explicit definitions can be referenced in TABLE 3.

Table 3: Notations

Symbols Description
𝐺𝑝 The physical topology.
𝐺𝑎 The auxiliary graph.
𝐿 The length constraint for the OCh.
𝜋𝑤 Weight for WLEs.
𝜋𝑡 Weight for TrEs.
𝑃𝑑 The path information for demand 𝑑 , which only

contains OChs. We use 𝑃𝑝
𝑑
for the primary path

and 𝑃𝑏
𝑑
for the backup path.

𝐻 (·) Get physical hops for a OCh.
𝑊 (·) Get the weight of an edge in ALG.
𝑁𝑢𝑚𝑜𝑝𝑡 The number of nodes in the physical layer.

3.1 Main framework
To begin with, the main framework will be presented, where the
primary process is denoted by ‘𝑝’ while the backup process is de-
noted by ‘𝑏’. We also simplify inputs and outputs for the functions
in SMTG-ALGB.

Algorithm 1: SMTG-ALGB
Input: Physical topology 𝐺𝑝 , wavelength set Λ, length

constraint 𝐿, demands 𝐷 and so on
Output: 𝐺𝑎 , primary paths {𝑃𝑝

𝑑
} and backup paths {𝑃𝑏

𝑑
} for

𝐷
Initialize the ALG 𝐺𝑎 according to 𝐺𝑝 and Λ;
Sort the demands in a non-increasing order ;
𝐺𝑎, {𝑃𝑝𝑑 } ← Grooming(𝐺𝑎 , 𝐷 , ‘𝑝’) ;
𝐺𝑎, {𝑃𝑝𝑑 } ← Tabu-search(𝐺𝑎 , 𝐷 , {𝑃𝑝𝑑 } ,‘𝑝’) ;
Sort the demands in a non-decreasing order ;
𝐺𝑎, {𝑃𝑏𝑑 } ← Grooming(𝐺𝑎 , 𝐷 , ‘𝑏’) ;
𝐺𝑎, {𝑃𝑏𝑑 } ← Tabu-search(𝐺𝑎 , 𝐷 , {𝑃𝑏𝑑 }, ‘𝑏’) ;

3.2 Construction of the augmented-layer graph
Heuristic algorithms for solving GRWA problems involve the graph
construction based on the previous two-layer network structure as
the first step. For example, the link bundled auxiliary graph (LBAG)
in [11] can be effective with traditional grooming and routing al-
gorithms, albeit with some challenges such as wavelength consis-
tency constraints that need special consideration. While Layered-
AG (LAG) [14] provides clear representations of all processes, the
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abundance of edges, such as mux, demux, and converter edges,
may complicate the representation and hinder the efficiency of
the grooming algorithm. To address this concern and incorporate
the advantages of both approaches, we propose the ALG model.
An illustrative example of the ALG corresponding to Fig. 1 is pre-
sented in Fig. 2, where we assume that there are two available
wavelengths. In order to provide a comprehensive understanding
of ALG, a detailed explanation is provided below.

3.2.1 Edges in the ALG. In ALG, we classify the edges into three
categories as follows.

• WLE: Assuming that each physical link has |Λ| wavelengths,
|Λ| wavelength layers will be generated accordingly. The
notation 𝐸𝑤 (𝑖, 𝑗,𝑚) denotes the wavelength edge that forms
the connection between nodes 𝑖 and 𝑗 in the𝑚𝑡ℎ wavelength
layer, while its weight is represented by𝑊𝑤 (𝑖, 𝑗,𝑚).

• TrE: Edges representing transmitters and receivers are a
crucial component of ALG. The notation 𝐸𝑡 (𝑖, 𝜆𝑚) is used to
denote the transceiver edges connecting the virtual layer to
the𝑚𝑡ℎ wavelength layer, with𝑊𝑡 (𝑖, 𝜆𝑚) representing their
respective weights.

• OCh: Edges within the virtual layer are crucial in the es-
tablishment of an OCh, utilizing designated physical links
and a specific wavelength. If an OCh denoted as 𝐸𝑜 (𝑖, 𝑗, 𝜆𝑚)
is established to interconnect nodes 𝑖 and 𝑗 using wave-
length channel 𝜆𝑚 , the corresponding wavelength edges in
the𝑚𝑡ℎ wavelength-layer will be removed. The weight for
𝐸𝑜 (𝑖, 𝑗, 𝜆𝑚) is characterized by𝑊𝑜 (𝑖, 𝑗, 𝜆𝑚). The number of
physical hops when traversing an OCh through the physical
layer can be represented by 𝐻 (𝑖, 𝑗, 𝜆𝑚).

��

��

Figure 2: ALG

3.3 Grooming algorithm based on the ALG
After the construction of ALG, we can groom the traffic demands
one by one based on it. For example, if we want to establish a
connection between nodes 3 and 4, we can find a possible path
𝐸𝑡 (3, 𝜆2)-𝐸𝑤 (3, 4, 2)-𝐸𝑡 (4, 𝜆2), after which we should add an OCh
𝐸𝑜 (3, 4, 𝜆2) and delete 𝐸𝑤 (3, 4, 2) in the ALG. Basically, there exist
the primary and the backup routing algorithms, and these two ver-
sions exhibit minor differences in their approach towards updating
the graph for the LCNL-Dijkstra.

3.3.1 Grooming algorithm. The main grooming procedure is
shown in Algorithm 2. It should be noted that after the LCNL-
Dijkstra algorithm section, we perform iterations over both the
edge set and the node set of the path. However, this path may not
necessarily be the final OCh path for the given demand. We need

Algorithm 2: Grooming
Input: 𝐺𝑎 , 𝐷 , the type of grooming 𝑇 , ‘𝑝’ for primary and

‘𝑏’ backup.
Output: 𝐺𝑎 , {𝑃𝑑 }
for all 𝑑 ∈ 𝐷 do

if 𝑇 ==‘𝑝’ then
Delete the OChs where 𝐵𝑎 < 𝐵𝑑 ;

else if 𝑇 ==‘𝑏’ then
Delete all WLEs and OChs wich have joint parts
with the primary path of 𝑑 ;
Delete the OCh edges where 𝐵𝑠 + 𝐵𝑎 < 𝐵𝑑 ;
Update 𝐺𝑎 ;

end
if LCNL-Dijkstra(𝐺𝑎 , 𝑠𝑑 ,𝑡𝑑 , 𝑁𝑢𝑚𝑜𝑝𝑡 , 𝐿, 𝑃𝑎𝑡ℎ) then

Get the returned edge set 𝐸𝑑𝑔𝑒 ;
for all 𝑒 ∈ 𝐸𝑑𝑔𝑒 do

Determine the type of 𝑒 ;
Update 𝐺𝑎 and 𝑃𝑑 ;

end
else

Failed grooming process for 𝑑 ;
end
Restore the deleted edges before LCNL-Dijkstra ;

end

to transfer the wavelength sub-paths with TrEs into a newly estab-
lished OCh and save it in 𝑃𝑑 . Besides, WLEs used by the new OCh
will be deleted from 𝐺𝑎 .

3.3.2 LCNL-Dijkstra algorithm. In the LCNL-Dijkstra shown in Al-
gorithm 3, we endeavor to explicate the variables and functions that
will be mentioned. 𝑑𝑖𝑠𝑡 [·] denotes the distance from a node to the
source node, which is determined by theweights in𝐺𝑎 . Additionally,
𝑙𝑒𝑛[·] keeps track of the physical length of the most recent contigu-
ous subpath that exists within a single wavelength layer. Further-
more, 𝑝𝑟𝑒𝑣 [·] identifies the parent node and edge of a given node. It
should be noted that the nodes with smaller distances are prioritized
in 𝑄 , which serves as a priority queue. The vector 𝑜𝑚𝑠𝑁𝑜𝑑𝑒𝑠 [𝑣]
stores all non-repeating physical nodes from the original node
𝑠𝑑 to 𝑣 . The function CheckNoOverlap(𝑜𝑚𝑠𝑁𝑜𝑑𝑒𝑠 [𝑢], 𝑙) returns
𝑡𝑟𝑢𝑒 if edge 𝑙 has no repeating physical nodes with 𝑜𝑚𝑠𝑁𝑜𝑑𝑒𝑠 [𝑢]
except the joint node; it returns 𝑓 𝑎𝑙𝑠𝑒 otherwise. The function
CheckLength(𝐿,𝑢, 𝑙) returns 𝑡𝑟𝑢𝑒 if 𝑙𝑒𝑛[𝑢] + OmsLen(𝑙) ≥ 𝐿 ∗ (1 +
floor(𝑙𝑒𝑛[𝑢]/𝐿)) and false otherwise. Here, OmsLen(·) is used to
denote the physical length of a wavelength edge. If node𝑢 is relaxed
with edge 𝑙 , and the resulting subpath exceeds the designated limit,
this sub-path will be flagged for further splitting. Its weight may be
subject to increase during the subsequent Relax() part if required.

Next, we briefly describe the relaxing part in Algorithm 4, where
we ignore some necessary input variables.

Within the Algorithm 4, we make use of the ceil() function
when 𝑛𝑒𝑤𝑂𝑐ℎ ≠ 0. It aims to make 𝑙𝑒𝑛[·] accurately reflect the true
number of OCh if we consider the physical length constraint. Once
a path has been determined, the function Split() will be employed
to examine the TrEs and the physical length of WLEs between
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Algorithm 3: LCNL-Dijkstra
Input: Auxiliary graph 𝐺𝑎 , original node 𝑠𝑑 , terminal node

𝑡𝑑 , 𝑁𝑢𝑚𝑜𝑝𝑡 , 𝐿, 𝑃𝑎𝑡ℎ (including 𝐸𝑑𝑔𝑒 and 𝑁𝑜𝑑𝑒)
Output: 𝑓 𝑙𝑎𝑔
𝑓 𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒 ;
𝑛𝑒𝑤𝑂𝑐ℎ ← 0 ;
for each node 𝑣 ∈ 𝐺𝑎 do

𝑑𝑖𝑠𝑡 [𝑣] ← 𝐼𝑁 𝐹, 𝑙𝑒𝑛[𝑣] ← 0 ;
𝑝𝑟𝑒𝑣 [𝑣] .𝑛𝑜𝑑𝑒 ← −1, 𝑝𝑟𝑒𝑣 [𝑣] .𝑒𝑑𝑔𝑒 ← −1 ;

end
𝑑𝑖𝑠𝑡 [𝑠𝑑 ] ← 0 ;
𝑄.insert(𝑠𝑑 ) ;
𝑜𝑚𝑠𝑁𝑜𝑑𝑒𝑠 [𝑠𝑑 ] .push(mod(𝑠𝑑 , 𝑁𝑢𝑚𝑜𝑝𝑡 )) ;
while 𝑄 ≠ ∅ do

𝑢 ← 𝑄.pop() ;
if 𝑢 == 𝑡𝑑 then

𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒 ;
break ;

end
for each 𝑙 from adjacent edges of 𝑢 do

if CheckNoOverlap(𝑜𝑚𝑠𝑁𝑜𝑑𝑒𝑠 [𝑢], 𝑙) then
continue ;

end
if CheckLength(𝑙𝑒𝑛, 𝐿,𝑢, 𝑙) then

𝑛𝑒𝑤𝑂𝑐ℎ ← 1 ;
end
Get the other endpoint of 𝑙 and denoted as 𝑣 ;
Relax(𝑑𝑖𝑠𝑡,𝑢, 𝑣, 𝑙, 𝑛𝑒𝑤𝑂𝑐ℎ, 𝜋𝑡 ) ;

end
end
if 𝑓 𝑙𝑎𝑔 then

Generate a complete path 𝑡𝑚𝑝𝑃𝑎𝑡ℎ based on 𝑝𝑟𝑒𝑣 ;
𝑃𝑎𝑡ℎ ← Split(𝑡𝑚𝑝𝑃𝑎𝑡ℎ) ;

end

Algorithm 4: Relax
Input: 𝑑𝑖𝑠𝑡,𝑢, 𝑣, 𝑙, 𝑛𝑒𝑤𝑂𝑐ℎ, 𝜋𝑡
if 𝑑𝑖𝑠𝑡 [𝑣] ≠ 𝐼𝑁 𝐹 and
𝑑𝑖𝑠𝑡 [𝑢] + W(𝑙) + 2 ∗ 𝑛𝑒𝑤𝑂𝑐ℎ ∗ 𝜋𝑡 < 𝑑𝑖𝑠𝑡 [𝑣] then
𝑑𝑖𝑠𝑡 [𝑣] ← 𝑑𝑖𝑠𝑡 [𝑢] +𝑊 (𝑙) + 2 ∗ 𝑛𝑒𝑤𝑂𝑐ℎ ∗ 𝜋𝑡 ;
𝑝𝑟𝑒𝑣 [𝑣] .𝑛𝑜𝑑𝑒 ← 𝑢, 𝑝𝑟𝑒𝑣 [𝑣] .𝑒𝑑𝑔𝑒 ← 𝑙 ;
𝑄.insert(𝑣) ;

end
if 𝑛𝑒𝑤𝑂𝑐ℎ ≠ 0 then

𝑙𝑒𝑛[𝑣] ← ceil(𝑙𝑒𝑛[𝑢]/𝐿) + OmsLen(𝑙) ;
else if 𝑙 ∈ 𝐸𝑤 then

𝑙𝑒𝑛[𝑣] ← 𝑙𝑒𝑛[𝑢] + OmsLen(𝑙) ;
else if 𝑙 ∈ 𝐸𝑡 then

𝑙𝑒𝑛[𝑣] ← 0 ;
end
Update 𝑙𝑒𝑛[𝑣] and 𝑜𝑚𝑠𝑁𝑜𝑑𝑒𝑠 [𝑣] ;

them. In the event that a decision is made to split the correspond-
ing wavelength subpath, the splitting node can be chosen flexibly,
taking into account factors such as the reusability and availability
of wavelength channels. It is important to note, however, that the
number of splits should not exceed ceil(𝑙𝑒𝑛[𝑢]/𝐿).
3.3.3 Grooming policy and weights setting. Before we talk about
the setting of weight, we go through the bandwidth of a channel
first. The bandwidth for a wavelength channel can be categorized
into free bandwidth 𝐵𝑎 , dedicated bandwidth, and spare bandwidth.
The spare bandwidth can further be divided into sharable spare
bandwidth 𝐵𝑠 and non-sharable bandwidth.

In our survivable protection scheme, we will identify a risk-
disjoint backup path for the primary path of each demand, taking
link failure scenarios into consideration. Given that the backup
routing process entails the utilization of sharable bandwidth, it
is judicious to prescribe distinct weight settings for the primary
and backup grooming, respectively. Besides, In order to minimize
the usage of OChs, which constitute the cost component of our
task, it is imperative to enhance the sharable ability of the routing
algorithm. Considering the aforementioned background and the
insights provided in [12], we propose the following weight setting
and diverse grooming processes can be delineated by varying the
weights in ALG.

Table 4: Weight setting for primary and backup routing

Primary,
edge 𝑒

WLE 𝑊𝑤 (𝑒) =
{
𝜋𝑤 , if 𝐸𝑤 (𝑒) is unused
∞, otherwise

TrE 𝑊𝑡 (𝑒) = 𝜋𝑡

OCh 𝑊𝑜 (𝑒) =
{
𝛼 × 𝐻 (𝑒), if 𝐵𝑎 ≥ 𝐵𝑑

∞, otherwise ,

where 0 < 𝛼 ≤ 1 and 𝛼 is tunable.

Backup,
edge 𝑒

WLE 𝑊𝑤 (𝑒) =
{
𝜋𝑤 , if 𝐸𝑤 (𝑒) is unused
∞, otherwise

TrE 𝑊𝑡 (𝑒) = 𝜋𝑡

OCh 𝑊𝑜 (𝑒) =




𝛼 × 𝐻 (𝑒), if 𝐵𝑠 ≥ 𝐵𝑑
(𝛽 + 𝛼 (1 − 𝛽))
×𝐻 (𝑒) ,

if 𝐵𝑠 < 𝐵𝑑
≤ 𝐵𝑠 + 𝐵𝑎

∞, otherwise
,

where 0 < 𝛼 ≤ 1 and 𝛽 = (𝐵𝑑 − 𝐵𝑠 )/𝐵𝑑 .

3.4 Tabu Search Algorithm
Tabu search is a widely employed meta-heuristic method. For a
comprehensive understanding of it, interested readers are advised to
refer to [4]. Our proposed tabu search algorithm entails the removal
of a pre-existing OCh and subsequently rerouting its associated
demands to other extant OChs, the complete removal of an OCh
may not be a feasible option in every instance. Consequently, we
adopt a strategy which accepts a move that either preserves the
extant number of OChs or augments it. We delineate the following
significant measures.

Firstly, thoroughly examining every OCh in each iteration would
be exceedingly time-consuming. To overcome this issue, we propose
generating a relatively small set of OCh edges, then selecting a
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single edge for manipulation in each subsequent iteration. Secondly,
to enhance the algorithm’s flexibility, we adopt a hybrid approach
involving both fixed and variable tabu steps. Moreover, we integrate
the OCh into the tabu list and remove the corresponding OCh from
the list after the later tabu steps. Thirdly, when it is necessary to
remove an OCh and re-groom the associated demands, it is probable
that they will be assigned to the same physical links that were
previously allocated for the deleted OCh. To circumvent this issue,
the weights of all relevant WLEs can be raised after removing the
OCh. Lastly, an important measure is inspired by previous work
in [2] and [3], where a cost function is defined for each move of
re-grooming demand. In the end, we opt to choose the slightest
cost move. We omit the intricate details, which resemble those of
the preceding algorithm.

3.5 Experiments
In this section, we provide the details of our experiments involving
four distinct networks. The first two are synthetic small-scale net-
works, while the latter two correspond to large practical networks
of cities in China. Table 5 presents the statistical characteristics of
networks and demands. Specifically, in the network under consid-
eration, each physical link can accommodate up to 80 wavelengths,
and each wavelength channel has a bandwidth of 100G. The traffic
demands being considered have diverse bandwidth requirements,
e.g. {2.5, 10, 100}G; The physical length of links in Network 1 and 2
varies between 1, 2, and 3 km, whereas in Network 3, it is mainly 1
km. The physical length of links in Network 4 is much longer, from
1 to 800 km. For the weights of WLEs and TrEs in our heuristic
algorithm, we set 𝜋𝑤 = 1 and 𝜋𝑡 = 10, respectively. Besides, we
limit each vertex pair to a maximum of 20 paths for the computation
of the ILP. Our experiments are running in an Ubuntu server with
an Intel(R) Xeon(R) Gold 6266C CPU of 3.00GHz and a RAM of
64GB.

Table 5: Network topology
Network |𝑉1 | |𝐸 | |𝑉2 | |Λ| |𝐷 | 𝐿 |𝑃 |

1 4 4 4 3 4 10 8
2 6 8 6 4 6 10 73
3 65 96 65 20 122 6 6429
4 227 409 227 40 578 1000 33537

Table 6 presents the ILP and heuristic results (OCh number and
time consumption). For the heuristic algorithm with tabu search,
we achieve the same optimal values as we get from the ILP for small-
scale networks. Moreover, the time consumption of the heuristic
algorithms for small-scale networks is almost negligible. Besides,
it was not possible to construct the ILP using the SCIP solver for
networks 3 and 4, since the variables and constraints involved in
network 3 are estimated to be approximately 1.5 billion and 4.5
billion, and they will be large for the network 4. However, even
when conducting hundreds of rounds of tabu search on large-scale
networks, the heuristic remains effective and highly competitive.

4 CONCLUSION
In this paper, we have presented the SMTG-ALGB algorithm, which
tackles the survivable GRWA problem with the no-loop and OCh

length constraints and aims to minimize the usage of OCHs.We first
construct the ALG and then devise grooming algorithms. Since our
primary and backup grooming algorithms’ effectiveness is highly
dependent on the weights configured within the ALG, a detailed
exposition on weight setting is also provided. Lastly, a tabu search
algorithm is proposed to further improve the grooming result.

The experiments have demonstrated that our algorithm can
achieve the optimal solution for a small network and provide ef-
fective grooming results for large practical networks, while the
ILP-based method can only be applied to small networks.

Table 6: Overall Results

Network ILP Our algorithm
(without TS)

Our algorithm
(with TS)

OCh Time OCh Time OCh Time
1 4 1s 5 0.001s 4 0.001s
2 8 4221s 9 0.001s 8 0.003s
3 None None 113 0.2s 102 20s
4 None None 1104 8s 1060 766s
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Feasibility of Near Term Quantum Optimisation of
Communication Networks

Catherine White1

1BT Research, Adastral Park, Ipswich, UK , � catherine.white@bt.com

Present day and near-term Quantum Computers are of the Noisy, Intermediate-Scale Quantum (NISQ)[1]
type: they are not fully error corrected against imperfections (such as noise, decoherence, stray coupling
and open boundary effects) in the physical encoding and processing of quantum information, and they
have a fairly limited number of qubits per Quantum Processing Unit (QPU). In this class of machines,
we may include present-day quantum annealers, as well as gate-based quantum computers. For the latter
type of system, hybrid variational algorithms such as Variational Quantum Eigensolver (VQE)[2] have
been invented.

Real world optimisation problems in the field of Communication Networks may fall into the class
NP, particularly when constrained to discrete (integer) solutions. Some real world scenarios do present
instances which are practically computationally hard. For example, when multiple different demands are
placed on a network such that it is close to capacity, or when other constraints and optimisation goals
also exist (and are hard to satisfy), such as absolute limits on latency, or a target of cost optimisation. I
will present examples of such hard instances, and discuss their characteristics.

All though noise cannot be fully compensated in the NISQ era, there is a range of evidence and
opinion about whether such systems may still offer some quantum advantage for problem solving (e.g.
optimisation or satisfaction problems) for practical systems. Such systems may be divided into quantum
systems (optimisation of quantum information) and classical systems (optimisation of classical informa-
tion). The optimisation of communication networks primarily falls into the latter category (although
with development in quantum communication networks, examples of the former might exist.)

I will provide an update on ongoing work at BT to explore the potential, including highlighting a
collaborative UKRI project into the feasibility of NISQ era advantages to real world communication
network optimisation. Current work, and a discussion of future work and challenges will be presented.
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2 METHODOLOGY
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1 Introduction
Segment Routing (SR) introduces a flexible approach to IP network routing, addressing limitations present
in conventional protocols. SR is to be used on top of an existing routing protocol and allows traffic to
take detours through nodes and links called node segments and adjacency segments.

The segment routing traffic engineering problem (SRTEP) uses shortest path based underlying pro-
tocols such as OSPF and assumes that the link weights are set. Only the SR-paths can be changed, and
there can only be one unique SR-path between two (ordered) pairs of nodes. The goal of the SRTEP is
to minimise the maximum link utilisation with respect to one traffic matrix (TM) [4].

This paper focuses on robust optimization within the SRTEP. Unlike traditional approaches that rely
on a single traffic matrix for optimization, we deal with an infinite set of matrices defined by linear
constraints. The objective is to identify routing strategies robust to the worst-case scenario within this
set.

We build upon prior work by introducing new linear formulations inspired by Bertsimas and Sim [1],
exploring their efficiency in comparison to exhaustive enumeration methods and constraint generation
methods. Our findings reveal promising results, showcasing the practicality and speed advantages of our
approach.

Keywords: Segment Routing, Traffic Engineering, Robust Optimization, Mixed Integer Linear Prob-
lem.

2 Methodology
The goal of robust optimization is to obtain the best possible solution in the worst case but this is
generally seen as rather conservative. In the SRTEP if only one traffic matrix was used and we assumed
that for each measure there was an error rate of for example 20%, then the worst possible matrix would
be the one where all demands are at 120% of their initial capacity. One can then prove that in the case
of the SRTEP, because the maximum link utilisation (MLU) is minimised, the resulting paths would not
change and the solution of the robust problem would be 20% worse than the original problem.

Bertsimas and Sim tackled this problem in [1]. They assume that even though all measurements could
be off by some amount, it is extremely unlikely that all measurements take their worst value at the same
time. They then introduce two parameters to their formulation Γ that indicates the amount of values
in the traffic matrix that are allowed to deviate from their original value and a vector est that for each
demand D(s, t) indicates how much this value can deviate from the original demand. For conciseness we
will assume that Γ is a natural number and the values of es,t will be proportional to D(s, t) but none of
these assumptions need to be true.

Due to space limitations we provide now a high level overview of our approach. The inputs to our
problem are a weighted and capacitated graph G(N, A) with node set N and directed arc set A, a Traffic
Matrix D, Γ and a maximum deviation parameter which defines es,t using D.

We first find a continuous linear formulation that maximises the additional load for each edge. The
dual of this problem can then be derived and by strong duality theorem it will have the same optimal
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value. This new minimisation problem can then be integrated in the formulation of the original SRTEP
problem, resulting in the minimisation of the maximal MLU on each edge with respect to our infinite set
of traffic matrices. This new formulation has |A| + |A| ∗ |D| new variables and |A| ∗ |D| new constraints.
The size of the problem is unaffected by the parameter Γ.

One should note that the formulation solved does not correspond to our original problem. This is
because we maximise the MLU of each link individually which implies that the flow on each link is not
conserved. Fortunately, because the minimisation of the MLU is used as objective function, the solution
obtained will be the same for both problems. This can be proved by contradiction, starting from an
optimal solution of one problem one can see that an optimal solution of the other problem cannot be
worse than the optimal solution of the first problem.

Other methods to solve the robust problem exist and do not need to be limited to the MLU objective
function. Since the traffic matrices are defined by linear constraints, it is possible to enumerate all extreme
points of these constraints and give them as input to a modified formulation of the SRTEP accepting
multiple TMs, this would amount to adding

(|D|
Γ

)
× |A| new constraints to the problem. Another option

is to solve the SRTEP using one extreme TM. Generating the new worst TM with respect to the new
solution, adding new constraints to add this TM to the problem and iterating this until no new worst
TM is found. The solution found will then be optimal and this method is finite as a new extreme TM is
generated at each step and there are a finite number of extreme TMs.

3 Results
We compared the dual approach, the enumeration of all extreme points and the iterative generation of
TM. The parameters used are Γ = 2 and the maximum deviation is 100% meaning that at most two
demands can change and their volume can up to double. The instances used come from Repetita [3] and
used inverse capacity weights. We also used a preprocessing technique [2] to remove SR-paths from the
formulation while still ensuring an optimal solution.

In Figure 1 we compare how many instances were solved optimally (on the y-axis) within a certain
amount of time (on the x-axis) an see that the dual approach is generally the most efficient although the
constraint generation approach is sometimes faster and the enumeration of all extreme points is always
the worst option.

Figure 1: The cumulative number of instances solved over time.
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1 Introduction
The b-matching problem is a well-known variant of the famous matching problem with many applications.
Given an undirected graph, each vertex v can be matched up to bv times and edges can be used multiple
times. It is solvable in polynomial time. Applications include matching workers or produce to customers,
as in the Chinese Postman Problem, but it is also used in heuristics for other well-known Problems like
TSP. In other applications, the capacity bv has to be fulfilled exactly by a feasible matching. This variant
of the problem is called a perfect b-matching problem. In theory, the capacity bv is fixed and known
for each vertex. However, in practice, the capacity is often subject to uncertainties, as workers get sick
or customers drop out. In this talk, we present a new variant of both the b-matching and the perfect
b-matching problem under uncertain capacity ensuring robustness, called the directed robust (perfect)
b-matching problem, and analyze their complexity on different graph classes.

2 Related Work
Recent literature considering the matching problem under uncertain capacity mostly focused on online
variants of the problem. This is due to an application linked to online advertisements, the Ad Allocation
Problem. We refer to Mehta et al. [4] for more details on the topic. To the best of our knowledge, the
research on the robust matching or b-matching problem is very sparse. There are only three publications
considering variants of this problem, none of which consider the same problem we do. Katriel et al.
[3] propose a randomized algorithm for the robust recoverable matching problem with uncertain costs.
Housni et al. [2] consider a robust version of the ride-hailing problem where riders are matched to drivers.
They propose a two stage model where the available drivers and a first batch of riders are known while
the second batch of drivers are subject to uncertainty and only revealed in the second stage. Schmitz and
Büsing [1] consider a version of the robust b-matching problem under consistent selection constraints.
They also propose a two stage approach. In the first stage, the b-matching is only set on a given subset
of all edges, while the b-matching on the remaining edges is set in the second stage when the scenario is
known.

3 Problem Description and Summary of Results
An instance of the directed robust b-matching problem consists of a directed graph D = (V, A) with arc
value c ∈ Z|A| and a set of scenarios B for the uncertain capacities on each vertex. The problem has two
stages: first, we set a so-called pre-matching xv for each vertex v ∈ V , the sum of the matching over all
outgoing arcs. Second, after realization of the worst-case scenario, the b-matching with maximum value
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satisfying both the pre-matching and the scenario is chosen. Formally, the problem is then given as

max
x≥0

min
b∈B

max
mb≥0

∑

a∈A

camb
a (1)

s.t.
∑

(v,w)∈A

mb
(v,w) = xv ∀v ∈ V (2)

∑

(v,w)∈A

mb
(v,w) +

∑

(w,v)∈A

mb
(w,v) ≤ bv ∀v ∈ V (3)

mb
a ∈ Z+ ∀a ∈ A (4)

For the directed robust perfect b-matching problem, the matching in the second stage has to be a perfect
b-matching. Thus, the matching constraints (3) have to be satisfied with equality.

Due to the two-stage approach, this problem has multiple practical applications. The problem origi-
nated from an application related to healthcare, where a schedule for administering vaccinations requiring
two doses for each patient with limited, uncertain supply had to be devised. In this application, the pre-
matching would set appointments for a first dose for each patient. This simplifies the planning of the
complete schedule, as second doses can be planned for spontaneously in the presence of the patient. We
refer to [5] for details. Furthermore, this problem can be used in applications linked to supply chain man-
agement problems, where limited goods have to be shipped to different locations with uncertain demand.
An example would be a manufacturer selling a limited item in several stores. They have to decide how
many items to send to each store while the number of buyers in each store is uncertain. The pre-matching
then fixes the delivered goods for each store while the matching models the customers picking one of their
preferred stores. Depending on the model, robustness would then ensure that each customer is satisfied
or that all items are sold in each scenario.

Both variants of the problem turn out to be strongly NP-hard on arbitrary graphs with |B| ∈ O(n)
and weakly NP-hard even with |B| = 2 (see [5] for NP-hardness of the perfect variant). Because of this, we
examine the problems on different graph classes. We show that the directed robust b-matching problem
is weakly NP-hard even on semi-directed paths, which are connected directed graphs whose underlying
undirected graph is a path. The problem only becomes solvable in polynomial time on directed paths. In
contrast, it turns out that the directed robust perfect b-matching problem can be solved in polynomial
time on directed trees. A directed tree is a connected, directed graph whose underlying undirected
graph is a tree. Since each semi-directed path is also a directed tree, this result shows that the perfect
variant of the problem is easier to solve on some graph classes. Finally, we will discuss some ideas for a
polynomial-time algorithm for the directed robust perfect b-matching problem on directed series-parallel
graphs.
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The operation of complex, integrated process systems demands efficient use of resources whilst impos-
ing tight safety constraints. Mixed-integer optimization provides a powerful and flexible mathematical
template for modeling many tasks that involve discrete and continuous variables. Our contribution [2]
is dedicated to the minimization of a smooth nonlinear objective function subject to polyhedral and
integrality constraints:

minimize f(x) over x ∈ X := {x ∈ Rn | Aex = be, xl ≤ x ≤ xu, xi ∈ Z ∀i ∈ I} .

Bringing together nonlinear optimization with mixed-integer linear constraints enables versatile modeling,
but poses significant computational challenges. Despite the vast literature on mixed-integer programming,
this broad problem class remains relatively unexplored. With a focus on affordable methods, as opposed
to a global optimization perspective, we address such mixed-integer optimization problems, without any
convexity assumptions, following a trust region approach.

First of all, we define a suitable “criticality” concept, providing a localized tool to monitor first-order
optimality. Then, we develop a numerical scheme that exploits the objective function’s gradient and comes
with convergence guarantees (and optional acceleration steps). In particular, we investigate a method
based on sequential mixed-integer linear approximations with a trust region safeguard, computing feasible
iterates via calls to a generic mixed-integer linear solver, possibly tailored to the structure and feasible set
of the problem at hand. We build upon the trust region and sequential linearization rationales, providing
a detailed analysis which allows to successfully address nonconvex objectives. Convergence to critical,
possibly suboptimal, feasible points is established for arbitrary starting points. This contribution goes
beyond classical methods which seem to rely on the feasible set or the objective function being convex,
e.g., in sequential linear-quadratic programming [1] and Frank-Wolfe methods [3].

Finally, we present numerical applications in nonsmooth optimal control and optimal network design
and operation. While the intended outreach of this work is mainly theoretical, our findings constitute
a solid basis for the development of more efficient solvers, based for instance on the combination with
Newton-type algorithms. Numerical results illustrate the algorithmic behavior on two nontrivial exam-
ples, with encouraging results, and demonstrate the potential benefit of heuristic acceleration steps.

A research preprint with accompanying code is available online [2].
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ABSTRACT
In recent years, the concept of nesting gained renewed interest
within the location science community. Nesting allows to model
temporal aspects in planning, which are highly relevant in practice.
In this paper, we introduce the nested 𝑝-center problem, which is
an extension of the classic 𝑝-center problem. In this problem we are
given a finite time horizon and at each time period, we are allowed
to open a given number of facilities. The sets of open facilities at
each time period must fulfill the nesting property, i.e., the open
facilities at an earlier time period must be a subset of the open
facilities at a later time period. The objective function is the sum of
the objective function values of the individual periods and the goal
is to minimize this objective function. The objective function value
of each period is the maximal distance between a customer and its
closest open facility. We present two mixed integer programming
formulations for this problem. We provide a computational study
on well-known 𝑝-center instances from literature to assess the
performance of the two formulations and also to analyse the effect
of nesting.

1 INTRODUCTION
Consistency is very important in long term planning and in partic-
ular in the location of facilities. However, many facility location
problems potentially provide inconsistent solutions for varying
numbers of open facilities, i.e., for different numbers of allowed
open facilities the optimal locations can be vastly different. In prac-
tice, this could result in opening and closing of facilities when facing
a long term planning project, where initially some facilities are to
be built, and at some later time steps additional facilities are to be
built. This is of course undesirable for a variety of reasons such as
monetary cost or environmental cost.

The first ideas of modeling a facility location problem with such
consistency in mind appeared in the 1970s in works by Scott [20]
and Roodman and Schwarz [19]. In these works, the authors de-
scribe certain multi-period facility location problems, where the
number of open facilities is changed over time, but the open facili-
ties cannot be relocated. We note that location problems needing to
fulfill constraints of this type such as the particular nesting property
which is considered in our work (see Definition 1 for details) can
be categorized as one problem family within the area of the multi-
period problems (see Chapter 11 of [15] for a general overview of

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-095-0 on OpenProceedings.org
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license CC-by-nc-nd 4.0.

this area). However, most of the existing recent work regarding
such multi-period location problems usually focuses on varying de-
mand, distances, or cost over time, see e.g., [4, 7]. In 2022, McGarvey
and Thorsen [16] revisited nesting and applied the concept to the
𝑝-median problem. They also posed the question about applying
the nesting property to other classical location problems, such as
the maximum coverage problem or the 𝑝-center problem. In this
paper, we follow up on this open question by considering the latter.

The (discrete) nested 𝑝-center problem (n-𝑝CP) can be defined the
following way:

Definition 1. We are given a set I of customer demand points, a
set J of potential facility locations and distances 𝑑𝑖 𝑗 ≥ 0 between
each 𝑖 ∈ I and 𝑗 ∈ J . Additionally, we are given a time horizon
H = {1, . . . , 𝐻 } and a set of integers P =

{
𝑝1, . . . 𝑝𝐻

}
where 𝑝ℎ ≤

𝑝ℎ+1 for ℎ = 1, . . . , 𝐻 − 1 and 𝑝𝐻 ≤ |J |.
A feasible solution to the nested 𝑝-center problem consists of

a set Jℎ ⊆ J with
���Jℎ ��� = 𝑝ℎ for ℎ ∈ H . Moreover, the nesting

property must be fulfilled by these sets, i.e., Jℎ ⊆ Jℎ+1 must hold
for ℎ = 1, . . . , 𝐻 − 1.

For a given time period ℎ ∈ H and set Jℎ , let 𝑑ℎ (Jℎ) =
max𝑖∈𝐼 min𝑗∈Jℎ 𝑑𝑖 𝑗 . The objective function value of a given fea-
sible solution is defined as

∑𝐻
ℎ=1 𝑑ℎ (Jℎ) and the goal is to find a

feasible solution with minimal objective function value.

Observation 1. The objective function of the n-𝑝CP can be viewed
as minimizing the sum of the regrets over the time periods, where
the regret of a given n-𝑝CP-solution for a time period ℎ is defined
as the difference between the objective function value of the n-
𝑝CP-solution for the time period and the optimal 𝑝-center value
for 𝑝 = 𝑝ℎ . We note that the minimization of regret is a popular
concept when dealing with uncertainty, see, e.g., [21] and was also
considered in [16].

Observation 2. For |P | = 1 the problem reduces to the (classical)
𝑝-center problem (𝑝CP) which was introduced by Hakimi [12] in
1964. The 𝑝CP is NP-hard for 𝑝 ≥ 2 [14].

Observation 3. In our definition of the n-𝑝CP we have that the
number of facilities to be allowed open is non-decreasing over the
time horizon. The optimal solution to this problem is also the opti-
mal solution to the problem variant, where the number of facilities
to be allowed open is non-increasing over the time horizon (and the
nesting property is accordingly adapted to Jℎ+1 ⊆ Jℎ), as these
problems are equivalent.

Figure 1 shows an instance of the (nested) 𝑝-center problem (the
eil51 instance of the TSPlib[18]). In this instance, we have that
I = J , i.e., each point (visualized as gray dot) is a demand point
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Figure 1: Instance: eil51 and optimal solutions for n-𝑝CP with
P = {4, 5, 6} and 𝑝CP for 𝑝 = 4, 5, 6

and can also be used as potential facility location. The distance
between two points in this instance is the Euclidean distance. In
this figure, next to illustrating an optimal solution of the n-𝑝CP
for 𝐻 = 3 with P = {4, 5, 6}, we also illustrate optimal solutions
for the 𝑝CP when solving it for 𝑝 = 4, 5, 6 individually. The nested
solution is visualized using green triangles, with a green number
above a triangle indicating that the facility is open at this location
in the time period where 𝑝ℎ is this number. For example, if the
numbers four, five, and six are besides the diamonds, it means that
this location is used in all three time periods for the nested solution.
The solutions for the 𝑝CP are visualized using the orange rectangles,
with the orange numbers indicating that a facility is open at the
location in the optimal solution where 𝑝 is this number. Note that
the optimal solutions for the 𝑝CP open twelve different facilities in
total and only one facility which was in the solution for 𝑝 = 4 was
also in the solution for 𝑝 = 6. The optimal objective function value
for the n-𝑝CP is 61, while the objective function values for the 𝑝CP
for 𝑝 = 4, 5, 6 are 22, 19 and 17, giving a value of 58 in total. The
sum of the regrets is 61-58=3.

1.1 Contribution and outline
In this paper, we introduce the nested 𝑝-center problem and provide
two mixed-integer linear programming (MILP) formulations for it.
Based on these formulations, we conduct a computational study
on well-known 𝑝CP instances from literature to assess the perfor-
mance of the two approaches and also identify their limitations and
potential areas for their improvement.

The paper is structured as follows: In the remainder of this sec-
tion, we discuss previous and related work to the 𝑝CP and the
nesting property. In Section 2 we present our two MILP formula-
tions and Section 3 contains the computational study. Section 4
concludes the paper with an outlook to potential improvements to
be considered in future work.

1.2 Literature review
For the 𝑝CP there exists considerable amount of work on heuristic
and exact solution methods, as well as different adaptations and
variants. We focus our literature review on existing exact methods,
as our work is about the design of exact solution approaches. For the
existing work on heuristic methods and approximation algorithms
for the 𝑝CP we refer to the recent survey [11]. In 1970 the first
exact solution approach for the 𝑝CP was developed [17] using the
relationship to the set cover problem. Some recent state-of-the-art
algorithms for the 𝑝CP also use this connection [5, 6]. The classical
MILP formulation for the problem can be found in textbooks like
in Chapter 5 of [8]. More recently, a compact formulation has been
introduced in [9] and further extension of this formulation are pre-
sented in [1]. Their formulation has a binary variable 𝑦 𝑗 for 𝑗 ∈ J
to indicate at which point a facility opens and a binary variable 𝑢𝑘
for each distinct distance 𝐷𝑘 indicating whether the optimal value
of 𝑝CP is less or equal than 𝐷𝑘 . The authors show that their for-
mulation has stronger linear programming (LP) relaxation bounds
than the classical formulation. In [3] another compact formulation
with the same strength of the LP-relaxation is presented.

In 2022 a new projection based formulation was introduced
[10], which can be obtained by applying Benders Decomposition
to the classical formulation [8]. Their formulation only uses binary
variables 𝑦 𝑗 for 𝑗 ∈ J indicating open facilities and a continuous
variable which measures the distance in the objective function.
The authors also present a lifting procedure for the inequalities
in their formulation and show that the LP-relaxation bounds of
their lifted formulation are the same as the bounds obtained by the
formulations of [1, 3, 9].

Location problems, where facilities are opened iteratively over a
certain time horizon, has been discussed firstly in the 70s by [20].
The authors compared a dynamic programming system,which takes
into account the complete time horizon, with a myopic system,
which optimizes the next period without considering any later
periods. Their dynamic programming system outperformed the
myopic system for larger time horizons. A first MILP formulation
for such problems has been introduced in [19], where the authors
try to minimize the operational cost of closing facilities iteratively
over a certain time horizon and where the first to use a nesting-
type constraint which enforces open facilities to be open until the
end of the time horizon. Further, they presented a generalization
of the formulation where they start with a set of facilities which
are open at the beginning and a set of potential facilities which
can be opened. The starting facilities can be closed at any point in
the time horizon, but once closed must remain closed, while the
potential facilities can be opened, but not closed again. This allows
for a restricted redistribution of facilities. More recently, the nesting
concept was revisited and applied it to the 𝑝-median problem for
two objective functions, minimizing the sum of the regrets and
minimizing maximum regret by [16].

Incremental facility location and network design problems, f.e. [2,
13] are multi-period problems, in which a network is incrementally
extended by the means of adding arcs, facilities or nodes to maintain
incrementally increasing coverage requirements in each period
while optimizing some objective like minimization of total cost or
maximizing the cumulative flow over the planning horizon.
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2 MIXED INTEGER LINEAR PROGRAMMING
FORMULATIONS

In this section, we begin by presenting a first formulation of the
nested 𝑝-center problem based on the textbook 𝑝CP formulation
(see, e.g., [8]). Afterward, we present a second formulation based
on the 𝑝CP formulation presented in Section 2.1 of [1].

2.1 First formulation
Our first formulation (nPC1) for the n-𝑝CP uses two sets of binary
variables, denoted as 𝑥 and 𝑦. The variable 𝑥ℎ𝑖 𝑗 is indicating if cus-
tomer demand point 𝑖 ∈ I is assigned to potential facility location
𝑗 ∈ J in time period ℎ and the variable 𝑦ℎ𝑗 is indicating if a facility
is opened at the potential facility location 𝑗 in time period ℎ. The
continuous variables 𝑅ℎ measure the maximum distance from any
customer demand point to its nearest open facility in time period ℎ.

(nPC1) min
∑︁
ℎ∈H

𝑅ℎ (1a)

s.t.
∑︁
𝑗∈J

𝑦ℎ𝑗 = 𝑝
ℎ ∀ℎ ∈ H (1b)

∑︁
𝑗∈J

𝑥ℎ𝑖 𝑗 = 1 ∀𝑖 ∈ I,∀ℎ ∈ H (1c)

∑︁
𝑗∈J

𝑑𝑖 𝑗𝑥
ℎ
𝑖 𝑗 ≤ 𝑅ℎ ∀𝑖 ∈ I,∀ℎ ∈ H (1d)

𝑥ℎ𝑖 𝑗 ≤ 𝑦ℎ𝑗 ∀𝑖 ∈ I,∀𝑗 ∈ J , ℎ ∈ H (1e)

𝑦ℎ𝑗 ≤ 𝑦ℎ+1𝑗 ∀𝑗 ∈ J ,∀ℎ ∈ H \ {𝐻 } (1f)

𝑥ℎ𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ I,∀𝑗 ∈ J , ℎ ∈ H (1g)

𝑦ℎ𝑗 ∈ {0, 1} ∀𝑗 ∈ J , ℎ ∈ H (1h)

𝑅ℎ ∈ R≥0 ∀ℎ ∈ H (1i)

The objective function (1a) minimizes the sum over the distances
𝑅ℎ over all time periods. The constraints (1b) ensure that 𝑝ℎ facili-
ties are opened in time period ℎ. Constraints (1c) ensure that each
customer is only assigned to one facility in each time period. The
constraints (1d) are pushing the decision variables 𝑅ℎ to the largest
distance of any assigned customer-facility combination in each
time period. Each customer can only be assigned to an open facil-
ity, which is ensured by constraints (1e). The nesting constraints
(1f) ensure that each facility, which is opened in time period ℎ, is
also open in time period ℎ + 1, so once a facility is opened in a
time period, it cannot be closed in later time periods. Without this
constraint, the formulation would just represent the sum over the
individual 𝑝-center problems for each time period. The remaining
constraints (1g) - (1i) are the binary constraints for the variables
𝑥ℎ𝑖 𝑗 and 𝑦

ℎ
𝑗 and the non-negativity constraint for variables 𝑅ℎ .

2.2 Second formulation
Our second formulation uses the binary variable 𝑦ℎ𝑗 for 𝑗 ∈ J and
ℎ ∈ H to indicate the open facilities analogously to the formulation
(nPC1). Furthermore, letD =

{
𝑑𝑖 𝑗 : 𝑖 ∈ I, 𝑗 ∈ J

}
denote the set of

all possible distances and let𝐷1 ≤ . . . ≤ 𝐷𝐾 be the values contained
in D, so D = {𝐷1, . . . , 𝐷𝐾 }. Let K be the set of indices in D.

For a 𝑘 ∈ K the binary variables 𝑢ℎ
𝑘
indicate if the objective

function value in time period ℎ (measured by continuous variable
𝑅ℎ) is greater or equal than 𝐷𝑘 . For customer 𝑖 ∈ I let the set S𝑖
be the set of indices 𝑘 ∈ K for which there exists a facility 𝑗 ∈ J
with 𝑑𝑖 𝑗 = 𝐷𝑘 .

(nPC2) min
∑︁
ℎ∈𝐻

𝑅ℎ (2a)

s.t.
∑︁
𝑗∈ 𝐽

𝑦ℎ𝑗 = 𝑝ℎ ∀ℎ ∈ H (2b)

𝐷0 +
𝐾∑︁
𝑘=1
(𝐷𝑘 − 𝐷𝑘−1) 𝑢ℎ𝑘 ≤ 𝑅ℎ ∀ℎ ∈ H (2c)

𝑢ℎ𝑘 +
∑︁

𝑗 :𝑑𝑖 𝑗<𝐷𝑘
𝑦ℎ𝑗 ≥ 1 ∀𝑖 ∈ I, ∀𝑘 ∈ S𝑖 ∪ {𝐾},∀ℎ ∈ H (2d)

𝑢ℎ𝑘 ≥ 𝑢ℎ𝑘+1 ∀𝑘 ∈ K \ {𝐾},∀ℎ ∈ H (2e)

𝑦ℎ𝑗 ≤ 𝑦ℎ−1𝑗 ∀𝑗 ∈ J ,∀ℎ ∈ H (2f)

𝑦ℎ𝑗 ∈ {0, 1} ∀𝑗 ∈ J ,∀ℎ ∈ H (2g)

𝑢ℎ𝑘 ∈ {0, 1} ∀𝑘 ∈ K,∀ℎ ∈ H (2h)

𝑅ℎ ∈ R ∀ℎ ∈ H (2i)

The objective function (2a) minimizes the sum over the distances
𝑅ℎ over all time periods. The correct value of the 𝑅ℎ-variables is en-
sured by constraints (2c). The constraints (2b) ensure that no more
than 𝑝ℎ facilities are opened in each time period. Constraint (2d) is
ensuring that if for any customer 𝑖 in time periodℎ no facility 𝑗 with
smaller distance than 𝐷𝑘 is opened 𝑢ℎ

𝑘
has to be one. Since (2d) is

not defined for all 𝑘 ∈ K but only for the subsets based on S𝑖 ∪{𝐾},
constraints (2e) are necessary in order to ensure that no 𝑢ℎ

𝑘
can

equal zero if 𝑢ℎ
𝑘+1 is one (otherwise constraints (2c) would not mea-

sure the distance correctly). The inequalities (2f) are for the nesting
and are the same as (1f). The remaining constraints are the bi-
nary and non-negativity constraints, respectively. This formulation
hasO((|I|+|K|) |H |) variables andO(min {|I| |J | , |I | |K |} |H |)
constraints instead of O(|I| |J | |H |) variables and constraints in
(nPC1). Depending on |K | this can be a significant reduction in
both variables and constraints.

Observation 4. There exist instances of the n-𝑝CP where the
LP relaxation bound of (nPC2) is stronger than the LP relaxation
bound of (nPC1). This is a direct consequence of the fact that for
instances with |P | = 1 (i.e., the 𝑝CP) both formulations reduce to
their classical 𝑝CP-formulation counterparts and that such a result
is known for these 𝑝CP-formulations, see, e.g., [1, 9].

3 COMPUTATIONAL RESULTS
The formulations from Section 2 have been implemented in C++ with
CPLEX 20.1 as MILP-solver and were run on a single core of an
Intel Xeon X5570 machine with 2.93 GHz with all CPLEX settings
left on default values. The time limit was set to 3600 seconds and
the memory limit to 9 GB.

We used two well-known instance sets in our computational
study:
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• pmed: This set contains 40 instances andwas used for the 𝑝CP
in e.g., [1, 3, 5, 6, 10]. For all instances, I = J = V holds,
so all customer demand points are also potential facility
locations. The number of |V| ranges between 100 and 900,
and 𝑝 is between 5 and 200. The instances in this set are
given as graphs, and the distances 𝑑𝑖 𝑗 are the shortest-path
distances between 𝑖, 𝑗 ∈ V in the graph.
• TSPlib: This is an instance set originally introduced in [18]
for the traveling salesperson problem. Subsets of this in-
stance set have been used in many works for the 𝑝CP, see,
e.g., [3, 5, 6, 9, 10]. The number of potential facilities equals
again the number of customer demand points, so |V| =
|I | = |J |. In the subset we consider for our study |V|
ranges between 51 and 1002. The exact values of |V| can be
found in the name of the instances in Table 2 as part of the
instance name. The instances contain the two-dimensional
coordinates for each point to calculate the Euclidean distance.
Following previous literature, we rounded the distances to
the nearest integer.

3.1 Comparison of formulations
In Table 1 we present the runtime (column t[s]), lower and upper
bounds (columns lb and ub) and optimality gap (column g[%]) ob-
tained for the pmed instances with P = {𝑝, 𝑝 + 1, 𝑝 + 2}, where 𝑝
is given by the instance. If no optimal solution has been found
within the time limit, it is indicated with the abbreviation TL in the
runtime-column. The optimality gap is calculated as 𝑢𝑏−𝑙𝑏𝑢𝑏 100 and
the best obtained gap considering both formulations is indicated in
bold. The formulation (nPC2)manages to solve eleven instances to
optimality within the time limit, whereas formulation (nPC1) does
not manage to solve any instance. Moreover, there is no instance
where the obtained optimality gap of (nPC1) at the time limit is
better than the time limit of (nPC2). We note that for formulation
(nPC1) in 19 instances it was not possible to finish building the
model for CPLEX to finish solving the initial LP relaxation within
the given time limit. These issues in scalability between the two
formulations can be explained by the fact, that the distances in the
pmed-instance are based on shortest-path distances in a graph, thus
there are not so many distinct distances, hence 𝐾 is small, which is
good for (nPC2).

For the instance set TSPlib, we used P = {4, 5, 6}. The results
(reported in Table 2) paint a similar overall picture, i.e., (nPC2)
outperforms (nPC1) most of the time. With formulation (nPC2) 14
out of 50 instances of this set can be solved to optimality within
the timelimit, whereas for formulation (nPC1) only 3 out of 50
instances can be solved to optimality. Regarding the optimality gap
for instances not solved to optimality, the picture is not as clear as
for instance set pmed. However, for nearly all instance for which
(nPC1) had a lower gap than (nPC2), the lower bound of (nPC2)
is better, but the upper bound is worse. This indicates that CPLEX
primal heuristics seem to work better with (nPC1) while the theo-
retical strength of the LP relaxation of (nPC2) compared to (nPC1)
seems to pay off also in practice. We note that for these instances
there are much more distinct distances, and thus larger values of 𝐾
compared to instance set pmed, as in this instance set the distances
are based on the Euclidean distance. This can contribute to make
them more difficult for formulation (nPC2) and is also reflected

Table 1: Comparison of (nPC1) and (nPC2) for the pmed instances
with P = {𝑝, 𝑝 + 1, 𝑝 + 2}

(nPC1) (nPC2)

Inst. p |V| t[s] lb ub g[%] t[s] lb ub g[%]
1 100 5 TL 267 381 29.95 1833.939 356 356 0.00
2 100 10 TL 196 345 43.14 313.387 292 292 0.00
3 100 10 TL 207 310 33.27 111.594 278 278 0.00
4 100 20 TL 139 235 40.85 85.634 220 220 0.00
5 100 33 TL 85 139 38.64 61.483 138 138 0.00
6 200 5 TL 178 276 35.50 TL 220 252 12.70
7 200 10 TL 134 201 33.42 TL 180 188 4.05
8 200 20 TL 100 180 44.31 1028.47 161 161 0.00
9 200 40 TL 59 488 87.84 1022.54 109 109 0.00
10 200 67 TL 29 63 53.23 416.797 58 58 0.00
11 300 5 TL 132 297 55.51 TL 160 175 8.79
12 300 10 TL 111 303 63.25 TL 140 154 9.03
13 300 30 TL 69 349 80.34 2964.903 107 107 0.00
14 300 60 TL 42 406 89.73 TL 67 78 13.49
15 300 100 TL 24 204 88.24 2756.437 52 52 0.00
16 400 5 TL 108 223 51.51 TL 131 140 6.50
17 400 10 TL 87 216 59.55 TL 106 117 9.68
18 400 40 TL 0 103239 100.00 TL 74 423 82.44
19 400 80 TL 30 256 88.34 TL 49 303 83.92
20 400 133 TL 18 106 83.04 3488.017 39 39 0.00
21 500 5 TL 0 92343 100.00 TL 107 130 17.39
22 500 10 TL 0 125994 100.00 TL 101 339 70.13
23 500 50 TL 0 95016 100.00 TL 58 282 79.31
24 500 100 TL 0 101730 100.00 TL 39 300 86.89
25 500 167 TL 14 228 93.64 TL 32 245 86.98
26 600 5 TL 0 106278 100.00 TL 101 113 10.88
27 600 10 TL 0 120651 100.00 TL 87 96 9.30
28 600 60 TL 0 148722 100.00 TL 48 330 85.57
29 600 120 TL 0 109215 100.00 TL 32 264 87.74
30 600 200 TL 13 220 94.13 TL 24 288 91.82
31 700 5 TL 0 96330 100.00 TL 82 195 58.05
32 700 10 TL 0 210198 100.00 TL 77 372 79.25
33 700 70 TL 0 106851 100.00 TL 41 222 81.60
34 700 140 TL 0 149175 100.00 TL 28 294 90.52
35 800 5 TL 0 119076 100.00 TL 82 91 9.50
36 800 10 TL 0 161628 100.00 TL 75 261 71.44
37 800 80 TL 0 139044 100.00 TL 40 234 83.09
38 900 5 TL 0 160359 100.00 TL 78 252 69.16
39 900 10 TL 0 262383 100.00 TL 62 345 81.89
40 900 90 TL 0 127518 100.00 TL 34 207 83.61

in the results, as for some instances of this set, the formulation
does not manage to solve the root relaxation within the time limit
(indicated by a value of zero in the column lb in the table).

3.2 Results in context to the 𝑝CP
Next, we take a closer look at the performance of (nPC2) and also
put the results obtained for the (nPC2) in context with results
obtained for the 𝑝CP. In Table 3 we report the objective function
values at termination (columns ub), the lower bound at the root
node (columns root lb) and at termination (columns lb) for the n-
𝑝CP with P = {𝑝, 𝑝 + 1, 𝑝 + 2} and also for the 𝑝CP with 𝑝 . The
𝑝CP is solved using the formulation of [1], i.e., (nPC2) for P = {𝑝}.
We denote this formulation by (PC). Table 4 reports the same values
for TSPlib.

In Table 3 and Table 4, we can see that the nesting does not
seem to have a huge effect on the obtained root lower bounds, as
for both (PC)̧ and (nPC2) the root lower bounds are close to the
lower bounds at termination and also close to the upper bounds
for instances solved to optimality. Thus, also for the (nPC2) this
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Table 2: Comparison of (nPC1) and (nPC2) for the TSPlib in-
stances with P = {4, 5, 6} for (nPC2). The number in the instance
names indicate the numbers of point in each instance.

(nPC1) (nPC2)

Inst. t[s] lb ub g[%] t[s] lb ub g[%]
eil51 869.843 61 61 0.00 46.905 61 61 0.00
berlin52 2105.984 1215 1215 0.00 31.623 1215 1215 0.00
st70 2558.426 90 90 0.00 99.939 90 90 0.00
eil76 TL 50 70 29.20 409.317 64 64 0.00
pr76 TL 13060 16850 22.49 1416.761 16330 16330 0.00
rat99 TL 98 163 39.91 1399.774 144 144 0.00
kroA100 TL 1976 2973 33.54 2465.575 2812 2812 0.00
kroB100 TL 1967 3426 42.57 TL 2496 2965 15.83
kroC100 TL 1937 3199 39.45 TL 2402 2886 16.76
kroD100 TL 1842 3062 39.85 2863.816 2862 2862 0.00
kroE100 TL 1939 3097 37.38 2582.52 2893 2893 0.00
rd100 TL 669 1208 44.64 TL 911 993 8.22
eil101 TL 50 75 33.42 537.34 66 66 0.00
lin105 TL 1384 2352 41.14 2419.2 2067 2067 0.00
pr107 TL 3258 5238 37.80 1763.96 5170 5170 0.00
pr124 TL 5637 7682 26.62 2752.469 7370 7370 0.00
bier127 TL 12541 18279 31.39 2791.905 15936 15936 0.00
ch130 TL 487 776 37.25 TL 589 715 17.63
pr136 TL 7251 10674 32.07 TL 8591 9318 7.80
pr144 TL 6392 11866 46.13 TL 7774 12221 36.39
ch150 TL 441 873 49.44 TL 514 2547 79.81
kroA150 TL 1872 3523 46.85 TL 2198 12654 82.63
kroB150 TL 1881 3663 48.66 TL 2200 12561 82.49
pr152 TL 6831 15625 56.28 TL 8756 14493 39.58
u159 TL 3155 6593 52.14 TL 4073 5119 20.44
rat195 TL 132 280 52.71 TL 152 859 82.29
d198 TL 1013 4531 77.65 TL 1260 12780 90.14
kroA200 TL 1905 4092 53.43 TL 2215 12879 82.80
kroB200 TL 1862 3602 48.32 TL 2179 12510 82.58
ts225 TL 8548 41811 79.56 TL 9602 44826 78.58
tsp225 TL 227 543 58.23 TL 271 1557 82.58
pr226 TL 7733 14448 46.47 TL 9467 50796 81.36
gil262 TL 132 620 78.70 TL 152 703 78.33
pr264 TL 3104 24933 87.55 TL 3755 26069 85.60
a280 TL 140 726 80.76 TL 159 843 81.09
pr299 TL 2760 18220 84.85 TL 3136 20877 84.98
lin318 TL 2395 10980 78.18 TL 2774 14598 80.99
linhp318 TL 2395 10980 78.18 TL 2774 14598 80.99
rd400 TL 0 898956 100.00 TL 767 4059 81.10
fl417 TL 0 0 100.00 TL 1381 7029 80.36
pr439 TL 0 0 100.00 TL 7780 38460 79.77
pcb442 TL 0 0 100.00 TL 2530 14523 82.58
d493 TL 0 0 100.00 TL 1900 12888 85.26
u574 TL 0 0 100.00 TL 0 10314 100.00
rat575 TL 0 493497 100.00 TL 0 493497 100.00
p654 TL 0 0 100.00 TL 0 0 100.00
d657 TL 0 0 100.00 TL 0 0 100.00
u724 TL 0 0 100.00 TL 0 0 100.00
rat783 TL 0 782220 100.00 TL 0 782220 100.00
pr1002 TL 0 0 100.00 2014.429 0 0 100.00

modeling approach seems to give strong lower bounds. However,
the heuristics of CPLEX seem to struggle to find good feasible
solutions for larger instances of the n-𝑝CP. This can be inferred
from the fact that we can construct a valid upper bound solution
for the n-𝑝CP-instances by just putting the solution obtained for
the 𝑝CP also as solution for 𝑝 + 1 and 𝑝 + 2 (together with one, resp.,
two random additional open facilities). The objective function value
of solutions constructed in such a way for the n-𝑝CP is at most
three times the objective function value obtained the 𝑝CP. Thus,
for example, for the instance rat195 we would obtain a solution
for n-𝑝CP with value at most 216 while using (nPC2) we obtained

Table 3: Root bound comparison on instance set pmed with P =
{𝑝, 𝑝 + 1, 𝑝 + 2} . Optimal objective function values are printed in
bold.

(PC) (nPC2)

Inst. |V| p ub root lb lb ub root lb lb
1 100 5 127 118 127 356 306 356
2 100 10 98 98 98 292 243 292
3 100 10 93 93 93 278 237 278
4 100 20 74 74 74 220 188 220
5 100 33 48 43 48 138 104 138
6 200 5 84 79 84 252 214 220
7 200 10 64 61 64 188 167 180
8 200 20 55 51 55 161 140 161
9 200 40 37 36 37 109 92 109
10 200 67 20 25 20 58 47 58
11 300 5 59 59 59 175 154 160
12 300 10 51 52 51 154 139 140
13 300 30 36 32 36 107 95 107
14 300 60 26 31 26 78 65 67
15 300 100 18 14 18 52 41 52
16 400 5 47 46 47 140 128 131
17 400 10 39 36 39 117 105 106
18 400 40 28 25 28 423 74 74
19 400 80 18 15 18 303 46 49
20 400 133 13 11 13 39 31 39
21 500 5 40 38 40 130 107 107
22 500 10 38 35 38 339 101 101
23 500 50 22 20 22 282 58 58
24 500 100 15 13 15 300 38 39
25 500 167 11 9 11 245 26 32
26 600 5 38 36 38 113 100 101
27 600 10 32 30 32 96 87 87
28 600 60 18 16 18 330 48 48
29 600 120 13 11 13 264 32 32
30 600 200 9 7 9 288 22 24
31 700 5 30 31 30 195 82 82
32 700 10 29 27 29 372 77 77
33 700 70 15 14 15 222 41 41
34 700 140 11 9 11 294 28 28
35 800 5 30 29 30 91 82 82
36 800 10 28 25 27 261 74 75
37 800 80 59 13 15 234 40 40
38 900 5 29 29 29 252 77 78
39 900 10 23 21 23 345 62 62
40 900 90 13 11 13 207 34 34

an upper bound of 859 at termination. The situation is similar for
many other instances.

4 CONCLUSION AND OUTLOOK
In this work, we introduced the nested 𝑝-center problem and pre-
sented two mixed-integer linear programming formulations for it,
together with a computational study to evaluate the effectiveness
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Table 4: Root bound comparison on instance set TSPlib with P =
{4, 5, 6}. TSPlib. Optimal objective function values are printed in
bold.

(PC) (nPC2)

Inst. ub root lb lb ub root lb lb
eil51 22 22 22 61 52 61
berlin52 426 426 426 1215 1100 1215
st70 33 33 33 90 78 90
eil76 23 23 23 64 52 64
pr76 6082 6082 6082 16330 12862 16329
rat99 51 46 51 144 109 144
kroA100 1001 832 1001 2812 2198 2812
kroB100 989 857 989 2965 2241 2496
kroC100 977 839 977 2886 2197 2402
kroD100 995 840 995 2862 2188 2862
kroE100 1030 826 1030 2893 2164 2893
rd100 349 305 349 993 794 911
eil101 23 92 23 66 53 66
lin105 717 615 717 2067 1619 2067
pr107 1746 1746 1746 5170 3730 5170
pr124 2588 2497 2588 7370 6592 7370
bier127 5578 5051 5578 15936 13004 15936
ch130 237 228 237 715 544 589
pr136 3225 2880 3225 9318 7742 8591
pr144 3375 2961 3375 12221 7758 7774
ch150 225 196 225 2547 512 514
kroA150 1024 822 1024 12654 2192 2198
kroB150 1042 830 1042 12561 2190 2200
pr152 5100 3732 5100 14493 8730 8756
u159 1655 1461 1655 5119 3754 4073
rat195 72 57 72 859 152 152
d198 623 541 623 12780 1255 1260
kroA200 1011 834 975 12879 2214 2215
kroB200 1008 826 835 12510 2178 2179
ts225 4243 3751 4243 44826 9601 9602
tsp225 124 104 124 1557 271 271
pr226 4104 3704 4104 50796 9438 9467
gil262 66 58 66 703 152 152
pr264 1610 1537 1610 26069 3754 3755
a280 79 60 79 843 159 159
pr299 6959 1192 1194 20877 3136 3136
lin318 4866 1065 1065 14598 2774 2774
linhp318 1331 1065 1065 14598 2774 2774
rd400 441 296 296 4059 767 767
fl417 676 536 537 7029 1381 1381
pr439 12820 12820 2958 38460 7780 7780
pcb442 4280 980 980 14523 2530 2530
d493 3957 749 749 12888 1900 1900
u574 3438 3438 692 10314 0 0
rat575 534 100 113 493497 0 0
p654 6083 1438 1444 7594660 0 0
d657 4771 4771 878 6044890 0 0
u724 3198 3198 614 3927170 0 0
rat783 628 628 117 782220 0 0
pr1002 0 0 0 0 0 0

of the proposed formulations. Based on the findings of the compu-
tational study, we currently work on the following topics to obtain
an improved solution framework for the problem:
• design of starting and primal heuristics, as CPLEX seems to
struggle to find good primal solutions on its own
• transferring the projection-based 𝑝-center formulation and
constraint lifting ideas of [10] to the nested setting for better
overall scaleability

Another interesting avenue for further research could be to combine
the nested problem with some form of uncertainty.
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In the p-median problem we are given a set of locations V = {1, . . . , n} and non-negative costs
wij , i ∈ V, j ∈ V, representing the cost of serving location i from a facility installed in location j (we
assume wii = 0, i ∈ V ). The p-median problem consists in selecting a subset of p locations where to
establish facilities and allocate each location to these facilities in order to minimize the total servicing
cost.

Here we revisit a formulation for the simple facility location and p-median problems introduced by
Cornuéjols, Nemhauser and Wolsey (1980) [2]. This formulation uses two sets of variables: binary variable
yj , j ∈ V that indicate whether location j is selected or not to install a facility, and nonnegative continuous
variables cj for the cost of serving location j, that is,

cj = min
i∈V

{wji|yi = 1}, j ∈ V. (1)

The p-median problem can be modeled as follows:

min
∑

j∈V

cj (2)

s. t.
∑

j∈V

yj = p, (3)

cj ≥ wjk

j −
k−1∑

t=1
(wjk

j − wjt

j )yjt
, j ∈ V, k ∈ {1, . . . , n − p + 1}, (4)

cj ≥ 0, j ∈ V, (5)
yj ∈ {0, 1}, j ∈ V. (6)

This formulation, named CNW, can be seen as the intersection of a selection set ((3), (6)) with an
additional family of optimality constraints (4) to define the costs correctly. We establish connections to
the classical formulation and to the Radius formulation [1].

Despite being the smallest known formulation regarding the number of variables, this formulation is
barely used in the literature. Recently, it has been employed as the result of Benders decomposition of
other formulations for large scale p-median problems, see [3].

By exploring the optimality constraints we discuss approaches to derive bounds for large-size instances.
These approaches are based on relaxations obtained by eliminating optimality constraints and can be
seen as simple matheuristic to solve large size instances. In particular, we characterize relaxations which
provide the optimal solution, and therefore, can be seen as new formulations for the p-medium problem.
One such relaxation is obtained by dropping half of the optimality constraints (4). For those cases where
the relaxation is not exact we propose a row generation algorithm to solve the instances to optimality.

Computational tests are reported [1] showing that the renewed formulation can be used efficiently to
solve p-medium instances. Indeed, by considering a small number of constraints (we report results with
two selection approaches and ten constraints associated with each node) provide very good solutions and
bounds. Moreover, separation algorithms based on these formulations are very efficient. The formulation
and the separation schemes can be easily implemented and used in large size instances. The results also
show that this formulation is a good alternative to the Radius formulation when the values of p are not
too large. Overall, we showed that this formulation can be quite competitive to solve certain location
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problems. Nevertheless, for each particular related problem,it may be necessary to adapt the relaxations
resulting from discarding optimality constraints and it may also be necessary to adjust the separation
schemes. Moreover, in order to devise competitive exact algorithms, the separation scheme needs to be
embedded in a general framework where additional issues (e.g. branching rules, use of heuristics, etc.)
need to be taken into consideration.
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Given a weighted complete undirected graph G = (V, E) with weights on the edges and a positive integer
p, the symmetric Hamiltonian p-Median Problem (HpMP) on G is to find a minimum weight set of p
elementary cycles partitioning the vertices of G. We focus on a variant of the HpMP (the HpMP≥) where
solutions with strictly more than p cycles are also feasible.

We present new extensions of known node-depot assignment compact formulations. Node-depot as-
signment models are characterized by the inclusion of node-depot assignment variables hd

i , which are 1
if and only if node d acts as the depot of the cycle node i is in (or alternatively, if node i is “assigned"
to node d), in addition to edge variables uij , which are 1 if and only if edge {i, j} is in some cycle. The
standard known node-depot assignment formulation is as follows (see [1], [2], [3]):

Min.
∑

{i,j}∈E

dijuij (1a)

s.t.
∑

j∈V

uij = 2, ∀i ∈ V (1b)

∑

d∈V

hd
d = p, (1c)

∑

d∈V

hd
i = 1, ∀i ∈ V (1d)

hd
i ≤ hd

d, ∀i, d ∈ V (1e)
hd

i + uij ≤ hd
j + 1, ∀i, j, d ∈ V : i ̸= j (1f)

hd
i = 0, ∀i, d ∈ V : d > i (1g)

uij ∈ {0, 1}, ∀{i, j} ∈ E (1h)
hd

i ∈ {0, 1}, ∀i, d ∈ V (1i)

The objective function corresponds to minimizing the sum of the weights of the edges which define
the p cycles. Equalities (1b) are the usual assignment constraints stating that each node is included in
exactly one cycle. Constraints (1h) define the uij variables as binary. A solution to the formulation
described by the uij variables alone is composed of one or more disjoint elementary cycles (with at least
three nodes each) covering all nodes of the graph. Equality (1c) indicates the number of nodes that
play the role of depots of the cycles. Constraints (1d) state that any node i must be assigned to exactly
one node d, and (1e) state that if some node i is assigned to some node d, then, that node must act
as a depot. Constraints (1g) enforce a symmetry breaking strategy (by stating that a node i cannot be
assigned to any node d such that d > i), and finally, (1i) define these variables as binary (although they
can be defined as continuous without altering the validity of any models presented here).

Observe that solutions representing sets of less than p cycles are still feasible for the model including
only the constraints described so far. That is why constraints (1f) are also required: these constraints
state that if two nodes i and j are adjacent, they must be assigned to the same depot, and by preventing
the existence of multiple depots in a single cycle, prevent solutions with less than p cycles.

We extend these formulations with edge-depot assignment variables zd
ij , which are 1 if and only if

node d acts as the depot of the cycle edge {i, j} is in. In this talk, we:

i) propose new formulations which use these variables;
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ii) relate these models with formulations including only the uij and hd
i variables;

iii) present new inequalities in the space of the uij and hd
i variables that are derived from the new

models using edge-based variables;

iv) present computational results obtained with the new models.

Preliminary computational results show that the new models produce very strong LP relaxation
bounds and, when used in combination with a modern ILP solver, allow for the resolution of instances
with over one-hundred nodes.
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Abstract: Energy generation is an area where four of the many problems facing humanity today - the
energy crisis, climate change, scarcity of natural resources and global warming - interact in a vicious circle.
In this scenario, it is not surprising that governments around the world are reviewing their energy policies.
Agents such as Renewable Energy Sources (RES) and Local Energy Communities (LEC) can play a fun-
damental role in the energy transition. However, the optimization of operational costs continues to be a
relevant factor. The Unit Commitment (UC) problem is one of the classical approaches to optimize these
costs. This problem involves decisions related to the schedule of generating units as well as the power
they must produce in order to meet the total power demand, where the last one can be deterministic
or uncertain. By integrating RES, a new source of uncertainty is added to the problem. In this work,
various formulations for the UC problem with uncertainty are presented and solved using benchmark data.

Keywords: Robust optimization, mixed integer linear programming, energy

1 Introduction
The Unit Commitment (UC) problem is one of the classical approaches to determine which generators
should be switched on or off in a given period and how much power they would dispatch over a short
or medium-term time horizon, subject to sets of constraints such as demand meeting, minimum up and
down times, and minimum and maximum power output. Usually, the UC problem is used to optimize the
power generation of thermal and hydrothermal units [7, 5, 3], but there are also applications of this model
for cases with renewable energy sources, either with or without the presence of hydrothermal generating
units [4, 6]. The UC problem is often formulated as a mixed integer program (MIP), which can be linear
(MILP) or non-linear (MINLP). The UC problem involves decisions about turning on or off generators
belonging to a set J = {1, 2, ..., J} during a certain period, and how much power they will produce. On
and off decisions are represented by binary decision variables, while power generation in represented by
continuous decision variables. Usually, the time horizon is represented by a discrete set K = {0, 1, ..., K}
of periods. In a very general way, some of the constraints of the UC problem are:

• Power demand meeting for each period: each period, the power produced by all the generating
units that are on should be able to satisfy the power demand.

• Minimum up and down constraints: depending on the nature of the generating units, they may
have a minimum operating time after being turned on, as well as a minimum idle time after being
turned off.

• Ramping constraints: these constraints model the fact that a generating unit cannot drastically
increase or decrease the amount of generated power.

Since the UC problem must ensure that energy demand is met, energy demand forecasts play a
fundamental role in solving real-life economic dispatch problems. When considering Renewable Energy
Sources (RES), forecasts related to the availability of these intermittent energy sources must also be
considered, so it is necessary to have tools to efficiently handle the randomness in the UC problem. This
paper focuses on presenting and solving different UC models with uncertainty in energy demand and
availability of dispatchable renewable energy.

Int. Network Optimization Conf. (INOC) 2024 Dublin, March 2024

Session 2A: Smart Grids

INOC 2024 35 Dublin,11–13 March 2024



REFERENCES

2 Methodology
Two groups of UC models can be found in literature. The first one is the Single Bus UC (SB-UC), in
which the aggregate energy demand must be satisfied, and the second is the Multi Bus UC (MB-UC),
where the demand of each bus must be satisfied separately. The main difference between these groups
of models is that MB-UC considers that energy flows through transmission lines, which have a limited
capacity of energy flow,which implies that the UC problem acquires a network structure by adding the
decision of how much energy flows from one bus to another.

To deal with uncertainty, the robust optimization approach was adopted. Robust optimization consid-
ers a set of uncertainty over which the objective function is optimized, taking into account that feasibility
must be maintained for all possible values of the uncertain parameters. To avoid that the solutions ob-
tained are too conservative, an uncertainty budget is usually considered, which allows adjusting the level
of conservatism of the solution [2]. For the UC problem with uncertain demand and RES availability
studied in this paper, each source of uncertainty has its own uncertainty budget parameter.

Two techniques were implemented to solve de robust model: Affine Decision Rules (ADR) [1], and
Column and Constraint Generation (CCG) [8]. The proposed models and the proposed techniques were
tested on instances based on the IEEE multi bus instances available in the MATPOWER package repos-
itory for MATLAB.
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Local Energy Communities (LECs) are seen as a mechanism for citizens to actively engage in the
energy transition. The integration of LECs into the existing distribution networks is key to a future of
clean, secure, and equitable energy. Current research, including studies like [3, 4], delves into critical
questions about the construction, management, and operation of low-voltage electricity networks to
facilitate LEC participation. There is an increasing need for detailed models that consider the diverse,
and sometimes conflicting interests of various energy system stakeholders. These models should account
for factors like energy loss, stochastic generation and demand, and infrastructure specific to LECs and
the types of renewable generation and energy storage assets they may choose to invest in.

In this changing landscape, it is key to consider the point of view and interests of both the distribution
network operator (DSO) and LECs and managers who may act on their behalf. The challenge for the
DSO is not just to ensure the reliability of the system but also to enhance operational efficiency metrics, a
task that increases in difficulty in the presence of LECs. On the other hand, LECs management systems
should ensure the maximisation of the LEC’s own performance metrics, while taking into account the
selfish interests of their members some of whom are prosumers i.e., customers who both produce and
consume electricity. Members of the LEC have their own heterorgeneous preferences and aim to maximise
their own utility functions. Ultimately, the effect of the LEC in the operation of the distribution system
materialises in the resulting power flows in the lines and transformers of the grid system that hosts the
LEC.

Different LEC business models and grid topology design decisions may affect the resulting power flows,
allowing different points of view to tackle the problem of supporting the development and operation of
LECs. From the planning perspective, studies in the context of smart grids, such as [2], have explored
approaches such as network reinforcement or reconfiguration to achieve better distribution of flows. The
authors use a MILP approach to minimise the costs of additional network cables and to minimise flows
between the LEC members, hence promoting self sufficiency and controlling the LEC’s electricity flows.
This approach allows the technical requirements from a power systems network operation perspective to
be explicitly included in the model. Emerging smart grid technologies manage flows at the physical and/or
logical level. Another perspective involves the design of business models of LECs, eventually determining
their energy consumption and production patterns, as in [3]. In response to the decision-making at the
LEC management level, demand response models could be implemented to align the interests of members
of an LECs and the DSO.

The interaction problem between the distribution network managed by the DSO and the LEC involving
prosumers can be modeled as a noncooperative game [5] with coupling constraints capturing the bilateral
reciprocity of the energy trades among the prosumers. Stackelberg games, and reformulations as bilevel
optimization problems, have been used to capture the hierarchical decision process between DSO, LEC,
and prosumers. For instance, the versatility of multi-level models is demonstrated in [1].

In this work, we propose a bilevel model that hierarchically incorporates, at the lower level, the LEC
management system, and, at the upper level, the DSO. Resulting equilibria determine pricing strategies
for the DSO, in the form of tariffs, which can be interpreted as signals for the active management of
the LEC and the operation of the distribution network, and ultimately, determine the resulting network
power flows. In this way, we aim to capture the complex interplay between LEC and DSO, and the
real-time distribution network operation.
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A branch-and-cut approach is employed to solve efficiently this complex, multi-level problem. This
method allows us to systematically explore the solution space, cutting off non-promising branches to focus
computational efforts on more likely solutions. By incorporating elements such as demand response,
energy storage, and variable renewable energy sources into our model, we aim to reflect the actual
conditions and challenges of modern electricity networks.

In summary, our bilevel model presents a strategic approach to integrating LECs into distribution
networks, balancing the objectives of the participants of the LECs with the efficient operation of the
distribution network. By applying a game-theoretic approach, this model adeptly manages the complex
interactions between the DSO and LECs, enhancing its practicality by taking into account the strategic
behaviors of both DSOs and LECs. This makes our model a significant contribution towards developing
sustainable, efficient energy policies for the future. However, bridging the gap between the proposed
model and its actual implementation presents significant challenges, indicating numerous opportunities
for future research in this area. Among them, we highlight the need for policies to periodically estimate
the parameters of the model based on online measurements, particularly under highly uncertain meteoro-
logical conditions (wind, temperature, solar irradiance, cloud cover etc.). That direction could be tackled
on the algorithmic side by taking advantage of the structure of the underlying network abstracted as
a graph, to provide algorithmic approach for equilibrium computation. Decentralised (machine learn-
ing) based approaches could be proposed to compute equilibrium, allowing both the speeding up of the
convergence rate and protecting data privacy.

Finally, taking a broader perspective, distribution grid tariffs are a key element in coordinating the
operation and network investment decisions, and conventional constant volumetric grid usage tariffs do
not provide an adequate response to the challenge of increasing peak loads, caused by the electrification
of heating and transport, which may require significant grid reinforcements. This change of paradigm
requires us to investigate the impact of different tariff structures on the operation and investment deci-
sions, as well as their indirect impact on the LEC. Interesting interpretations and tariff structure policy
design might result from the long-term extension of our bilevel model.
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The amount of stochasticity faced by firms operating in energy markets has dramatically increased in
recent years due to sources of uncertainty stemming from legislative changes, geopolitical unrest, and the
high penetration of renewable energy sources.[8][10] This increased stochasticity exposes players in these
markets to large amounts of risk and the threat of costly losses. When facing such potentially volatile
scenarios, players will act with risk aversion, and it is therefore necessary that mathematical models
describing the behaviour of these players be equipped with risk measures capable of quantifying this
risk-averse decision-making.[2] This work will consider the impact of applying risk measures to energy
markets, and in particular to multi-player equilibrium models, wherein firms compete with each other
and possess market power by acting in the Cournot sense.[7] It seeks to explore the impact which arises
as a consequence of incorporating risk measures into equilibrium models. We are particularly concerned
with the conditional value-at-risk, second-order stochastic dominance constraints, and concave utility
functions, each of which have been frequently employed in existing literature.[9][4][11] We will consider
sources of uncertainty caused by stochastic costs and by stochastic demand; constructing illustrative equi-
librium models for each by adapting, enhancing, and expanding the scope of existing toy models.[2][6]
This analysis will encompass a discussion of the risk measures both computationally and analytically,
including comparison between the risk measures and discussion of their respective advantages. It will
furthermore consider the circumstances under which the equilibrium models can be converted to more
tractable optimisation problems.[5] Attention is additionally paid towards Arrow-Debreu securities, which
provide a prospective mechanism of completing the market.[3][10] This work seeks to build upon sim-
ilar previous inquiries in a single-player context,[1] and aims to ameliorate understanding of these risk
measures and the impact that their implementation has in energy markets. Such analyses will become
only more relevant as the ongoing energy transition enforces the need for flexible and stochastic energy
markets.

Keywords: Energy markets; Equilibrium modelling; Risk Measures; Optimization
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1 Introduction
Many service settings including healthcare, infrastructure maintenance, emergency services, and educa-
tion entail providing various services at spatially distributed sites using flexible resources. The underlying
planning problem is complex because it entails deciding the number of resources of each type (with vary-
ing capabilities) to use, assigning an appropriate resource (from among the different types) to each task,
and sequencing and routing every resource. We seek a solution that not only minimizes the sum of
resource usage, assignment, and travel costs but also allocates the work equitably among the resources.
Even the simplest variations of this problem are NP-hard. The goals of our paper are to (i) develop a
general formulation that effectively models this problem, (ii) compare alternate ways to model fairness,
(iii) develop and test solution approaches for the problem, and (iv) evaluate the cost of imposing fairness
requirements.

This problem spans two main streams of literature—resource scheduling and routing, and fairness
in work assignment. Paraskevopoulos et al. [1] provide a comprehensive literature review on resource-
constrained scheduling and routing. Cappanera et al. [2] study the skill vehicle routing problem to
service clients with different requirements. Unlike these models which assume a fixed set of resources, our
model incorporates the decisions of how many resources of each type to deploy. Also, past literature has
focused on modeling the movements of individual resources, whereas by indexing variables by resource
type our model can handle a large number of resources of each type as is common in practice. Matl et
al. [3] review fairness models in the routing and task assignment literature with criteria such as route-
and load-balancing. For the home healthcare context, Bonomi et al. [4] discuss various resource- and
client-based fairness measures and develop models to include these metrics. Our model represents fairness
in alternative ways, such as by constraining the highest or the lowest value across all resources for each
metric, or limiting the gap between the highest and lowest values.

2 Model Development
We consider a problem setting with spatially distributed clients who have distinct service requirements.
Each service type requires particular resource capabilities or skills. Resource types vary in their capabili-
ties; some can only perform one type of service, whereas others are more flexible and can perform multiple
services. We incur fixed costs for using resources, routing costs for each deployed resource to travel from
location to location, and resource-to-client assignment costs. These costs can vary by resource type and
service location. Resources are constrained by the overall workload that they handle and the duration of
their duty. The objective is to minimize the total cost. Our model incorporates various fairness require-
ments such as limits, for each resource, on (i) total working time, (ii) duty time, (iii) number of desirable
or or difficult tasks, and (iv) total distance travelled.

Our flow-based model uses a graph, G = (V ∪ B, A), where V is the set of client nodes, B is the set
of nodes where resources are based, and A is the set of arcs on which resources can travel. Since there
are multiple resources of each type, we index our model variables and associated parameters based on
resource type r ∈ R (versus individual resources). This approach not only vastly reduces the number of
variables in the model but also overcomes solution-symmetry issues. Node br ∈ B, denotes resource type
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r’s base, and µr is the maximum number of type r resources that are available for deployment. Resource
type r can flow over arcs in Ar and service clients in V r. Using a resource of type r incurs a fixed cost
F r; if this resource flows over arc (i, j) to service the client at j, the cost is cr

ij . We index fairness metrics
by k, k ∈ K. υrk

ij is the value of metric k when a type-r resource services node i and traverses arc (i, j).
We define binary resource routing variables, xr

ij , that equal 1 if resource type r traverses arc (i, j), and
0 otherwise. To model fairness, we introduce variables uk

ij that denote the cumulative value of metric k
if any resource traverses arc (i, j) before it services node j, and is 0 otherwise.

We use l, l ∈ L, to index the fairness criteria, and define Φlk(x, u) for each metric k and criteria l.
The function Φlk(x, u) can capture many different types of fairness requirements, and depends on the
assignment and routing decisions. For example, Φlk(x, u) can model the maximum or minimum of the uk

ij

values across all resources, or the range between these values. The parameter ζlk is the bound imposed
on this function. The model is given below.

min Σ(i,j)∈AΣr∈R:(i,j)∈Ar cr
ijxr

ij + Σ(br,j)∈AΣr∈R:(br,j)∈Ar F rxr
brj (1)

s.t. Σi:(i,j)∈AΣr∈R:(i,j)∈Ar xr
ij = 1 ∀j ∈ V, (2)

Σi:(j,i)∈Ar xr
ji = Σi:(i,j)∈Ar xr

ij ∀r ∈ R, j ∈ V r ∪ {br}, (3)

Σ(br,j)∈Ar xr
brj ≤ µr ∀r ∈ R, (4)

Σi:(j,i)∈Auk
ji − Σi:(i,j)∈Auk

ij = Σi:(j,i)∈AΣr∈R:(j,i)∈Ar υrk
ji xr

ji ∀k ∈ K, ∀j ∈ V, (5)

uk
ij ≤ Σr∈R:(i,j)∈Ar Urk

j xr
ij ∀k ∈ K, ∀(i, j) ∈ A : i /∈ B, (6a)

uk
bj = Σr∈R:(b,j)∈Ar υrk

bj xr
bj ∀k ∈ K, ∀(b, j) ∈ A : b ∈ B, (6b)

Φlk(x, u) ≤ ζlk ∀k ∈ K, ∀l ∈ L, (7)

xr
ij ∈ {0, 1} ∀r ∈ R, (i, j) ∈ Ar, (8a)

uk
ij ≥ 0 ∀k ∈ K, (i, j) ∈ A. (8b)

The objective (1) minimizes the sum of resource usage, assignment, and routing costs. Constraints
(2) ensure that each client is served by exactly one resource. Constraints (3) enforce conservation of
resource flows, while constraints (4) specify the maximum number of available resources of each type
r ∈ R. Constraints (5) compute the cumulative fairness metric value for the resource arriving at client j.
Constraints (6a, 6b) link these values to the routing variables xr

ij , where Urk
j is metric k’s upper bound

on the route for resource type r to node j before servicing it. These constraints also ensure that the
solution does not contain any subtours that do not span a base node. Finally, constraints (7) bound the
value of fairness metric k for criteria l. Constraints (8) are the binary and nonnegativity constraints.

To strengthen the linear programming relaxation model, we develop some valid inequalities. We
conduct various computational tests to: (a) identify the main drivers of computational performance; (b)
compare solution effectiveness for alternative representations of fairness requirements; and (c) assess the
cost impact of imposing fairness requirements.
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3 NUMERICAL RESULTS
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1 Introduction
Clustering consists in partitioning a given set of data points in such a way that the points in a cluster
are more similar than those within the remaining ones. Assuming that k ∈ N is the intended number of
clusters, in the k-clustering problem each group is represented by a center point and the most common
criterion to optimize is the mean square error, given by:

k∑

j=1

n∑

i=1
||Xi· − Yj·||2

where Xi· represents the data point i, i = 1, . . . , n, and Yj· represents the cluster j’s center, j = 1, . . . , k.
The k-means algorithm [4] is a classical method used to solve this type of problem. It is simple to apply
and provides a local minimum for the problem, upon two steps that alternate until the solution stops
changing:

1. assigning the data points to the current clusters (that is, to the current center points);

2. updating the center points according to the new assignment.

The solution for the k-clustering problem may contain empty clusters or clusters with few points. This
issue can be overcome by limiting the cardinality of the clusters above and below according to bounds
known in advance. This variant of the problem is know as the cardinality constrained k-clustering
problem. Balanced k-clustering is a particular case of this variant, for which the sought partition of the
points should be as uniform as possible in terms of cardinality [2, 3]. Therefore, the sizes of the clusters
can vary by at most one data point.

2 Resolution method
We first address the cardinality constrained k-clustering problem with lower and upper bounds on the
number of points in each cluster, and describe a k-means-based algorithm to solve it. The assignment
step of this algorithm is formulated as a minimum cost flow problem defined on a suitable graph. Like in
the traditional approach, the data points correspond to supply nodes in the graph whereas the clusters
correspond to demand nodes. In addition, a dummy node is considered to balance the problem and
simultaneously to impose the minimum cardinality for each cluster. Naturally, this applies also to the
balanced k-clustering problem.

We then extend the same approach to solve the fairness balanced k-clustering problem [1]. In this
variant the data points are classified into different groups/types, and the goal of the problem is to identify
clusters that are balanced with respect to the cardinality in such a way that the different groups/types
are represented in the various clusters in a balanced manner.

3 Numerical results
The proposed methods were implemented in Julia, using Gurobi as the solver. Comparative empirical
tests ran on an 11th Gen Intel®Core™i7-1195G7 with 2.9 GHz, 1805 MHz, 4 cores and 16 Go RAM. The
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experiments used the benchmark data sets listed on Table 1. The points in the data sets Adult_2 and
Adult_5 are distinguished into two and five groups/types, respectively.

Name n k Source
si, i = 1, 2, 3, 4 5 000 15 http://cs.uef.fi/sipu/datasets/
MNIST_test 10 000 10 http://cs.uef.fi/sipu/datasets/
MNIST_train 60 000 10 http://cs.uef.fi/sipu/datasets/
ConfLong 164 860 11 http://cs.uef.fi/sipu/datasets/
Adult_i, i = 2, 5 32 561 10 https://archive.ics.uci.edu/dataset/2/adult

Table 1: Characteristics of the data sets and the experiments

Different intervals between the upper and the lower bounds for the sizes of the clusters were considered
for the cardinality constrained k-clustering problem. All these instances were solved in less than 2 seconds.
The results report that wider intervals require more iterations and bigger run times. For the balanced case
our method was compared with the regularized k-means method presented in [2], RKM, which penalizes the
objective function whenever the cardinality balance constraint is violated. In particular, the objective
function values output by both approaches is the same. In terms of the run time, the speed-up of
our method over RKM varied between 58% and 77%. In particular, the biggest instance was solved in
approximately 100 seconds. Finally, fairness balanced constrained k-clustering was compared with the
problem that does not consider the fairness of the clusters for the data sets Adult_i, i = 2, 5. As
expected, fairness indices increase with the new method. Furthermore, the instances were solved in up
to 20 seconds. The results of the computational experiments are discussed in more detail.

Acknowledgment The work of Marta Pascoal was partially supported by the Portuguese Foundation
for Science and Technology (FCT) under project grants UID/MAT/00324/2020 and UID/MULTI/00308/-
2020.

References
[1] M. Ghadiri, S. Samadi, and S. S.Vempala. Fair k-means clustering. CoRR, abs/2006.10085, 2020.

[2] W. Lin, Z. He, and M. Xiao. Balanced clustering: A uniform model and fast algorithm. In IJCAI,
pages 2987–2993, 2019.

[3] Y. Lin, H. Tang, Y. Li, C. Fang, Z. Xu, Y. Zhou, and A. Zhou. Generating clusters of similar sizes
by constrained balanced clustering. Applied intelligence, 52:5273–5289, 2022.

[4] S. Lloyd. Least squares quantization in PCM. IEEE transactions on information theory, 28:129–137,
1982.

Int. Network Optimization Conf. (INOC) 2024 Dublin, March 2024

Session 2B: Fairness and decision trees

INOC 2024 45 Dublin,11–13 March 2024



REFERENCES REFERENCES

Soft regression trees: a model variant and a decomposition
training algorithm

E. Amaldi1, A. Consolo1, and A. Manno2

1DEIB, Politecnico di Milano, Milano, Italy , � edoardo.amaldi/antonio.consolo@polimi.it
2DISIM, Università degli Studi dell’Aquila, L’Aquila, Italy, � andrea.manno@univaq.it

Decision trees are popular supervised Machine Learning (ML) methods for classification and regression
tasks. They are widely used in a variety of application fields ranging from Business Analytics to Medicine
and Biology. The success of decision trees lies mainly in their interpretability and good accuracy. Unlike
most black-box ML models, they reveal the decisions leading to the tree response for any input vector.
Interpretability is of particular importance in applications where the ML models support domain experts
decisions and justifiable predictions are required, such as for instance in medical diagnosis.

A decision tree is a directed binary tree with a set of internal nodes, referred to as branch nodes,
including the root, a set of leaf nodes, and two outgoing arcs (branches) for each branch node associated to
a splitting rule applied to the input space (feature space). Once values are assigned to the tree parameters
(those associated to the branch nodes and those associated to the leaf nodes), any input vector is routed
from the root along the tree according to the splitting rules at the branch nodes, eventually falling into a
leaf node where the output (the linear prediction or the class number) is determined. Hard or soft splitting
rules can be considered at branch nodes. In hard (deterministic) splits, the left branch is followed if a
single feature (univariate case) or a linear combination of the features (multivariate case) exceeds a given
threshold value. In soft splits, both left and right branches are followed with complementary probabilities
given by a continuous sigmoid function applied to a linear combination of the features.

In the seminal CART method for building univariate classification and regression trees [3], a topdown
and greedy approach is adopted: at each branch node a split is determined by minimizing a local impurity
measure. In the later variants C4:5 and ID3, the greedy approach is combined with a pruning phase
to decrease the tree size and to improve the testing accuracy by reducing overfitting. Since training
decision trees is known to be NP-hard, it is a challenging problem to globally optimize them over all tree
parameters.

During the past decade, growing attention has been devoted to globally optimized (trained) decision
trees with deterministic or soft splitting rules at branch nodes, leveraging on the remarkable advances in
mixed integer optimization and unconstrained nonlinear optimization.

In this work, we propose a variant of soft multivariate regression trees (SRTs) where, for every input
vector, a potential linear prediction is available at each leaf node as a linear regression of the features but
the actual tree prediction is the one associated to a single specific leaf node. Our nonlinear optimization
formulation for training such soft trees is well-suited to decomposition and to impose fairness constraints.
After showing a universal approximation result for SRTs, we present a node-based decomposition train-
ing algorithm which includes a specific initialization procedure and a heuristic for reassigning the data
points along the tree. Under mild assumptions, we also establish asymptotic convergence guarantees.
Experiments on 15 data sets from the UCI and KEEL repositories indicate that our model variant and
decomposition algorithm yield improved testing accuracy compared with the soft regression trees dis-
cussed in [2] by Blanquero et al., and significant speed-up in training time and similar testing accuracy
compared with the mixed integer optimization approach described in [1] by Bertsimas and Dunn.
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ABSTRACT
We consider modelling the placement of refuelling facilities for
alternative fuel vehicles in road networks by using directed graphs
and 𝑘-dominating sets. The concept of a reachability digraph cor-
responding to a road network is introduced, and three greedy
heuristics are proposed and experimentally tested to search for
𝑘-dominating sets in two types of digraphs, including the reachabil-
ity digraphs of road networks. These simple and efficient heuristics
show that refined greedy strategies usually provide better results
for large as well as small digraphs, and their results are reasonably
close to exact solutions for small digraphs. Combining the greedy
strategies with some randomized heuristic ideas helps to improve
the results even further in the case of digraphs associated with the
road networks.

1 INTRODUCTION
1.1 Motivation
Dominating sets in simple graphs and networks have attracted a lot
of attention from different perspectives, be they theoretical [1, 4, 12]
or more applied [8, 19–21] in nature. However, directed graphs, or
digraphs, which are more general abstract models in comparison
to the simple graphs, are often overlooked. For example, the classic
book on digraphs [2] does not pay much attention to dominating
sets, and the classic book on dominating sets [12] does not pay
much attention to digraphs. Digraphs offer advantages of more
subtle modelling tools though, like representing one-way streets in
road networks. Also, digraphs allow us to account for separate costs
or differences in fuel consumption depending on which direction
a road is travelled. These properties of digraphs are very useful
when modelling road networks, a major area of application of graph
theory [3, 5, 7, 8, 21]. On the other hand, in simple graphs it is not
clear how to represent one-way streets or roads that are on an
incline, causing fuel consumption to differ dramatically depending
on whether a vehicle is going up- or down-hill.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-095-0 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

In this paper, we consider the concept of 𝑘-dominating sets in
the context of digraphs, in particular, from the perspective of the
facility location problems in large-scale road networks (e.g., for this
application context, see results for the reachability simple graph
model defined in [8]). One of the classic NP-complete problems is
to find a smallest size dominating set in a simple graph [10]. This
problem is also known to be APX-hard [18] and, in general, is not
fixed-parameter tractable [6]. Naturally, these complexity issues
apply to finding smallest size 𝑘-dominating sets in digraphs as gen-
eralizations of the corresponding concepts and structures. Here,
we focus on simple, yet effective heuristics that produce efficient
results for large digraphs. To this end, we put forward a number
of greedy heuristics to solve the 𝑘-dominating set problem in di-
graphs for small values of 𝑘 . We run computational experiments to
illustrate their effectiveness, considering both randomly generated
digraphs as well as reachability digraphs corresponding to real
world road networks. Some potential randomized extensions of the
greedy strategies are also considered.

1.2 Basic Definitions, Notions, and Notation
A digraph 𝐷 is defined as 𝐷 = (𝑉 ,𝐴), where 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} is
a set of vertices and 𝐴 = {𝑒1, 𝑒2, ..., 𝑒𝑚} is a set of ordered pairs of
vertices called arcs. So, each arc 𝑒 ∈ 𝐴 is of the form 𝑒 = (𝑣𝑖 , 𝑣 𝑗 )
for some 𝑖, 𝑗 ∈ {1, ..., 𝑛}, 𝑖 ≠ 𝑗 . An arc 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) as well as its
inverse 𝑒−1 = (𝑣 𝑗 , 𝑣𝑖 ) may both be included in 𝐴 and, in this case,
are treated as independent entities. Thus, 0 ≤ 𝑚 ≤ 𝑛(𝑛 − 1).

The out-neighborhood of a vertex 𝑣 ∈ 𝑉 is defined as the set
𝑁 + (𝑣) = {𝑢 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐴}, i.e. the set of vertices that are di-
rectly reachable from 𝑣 by traversing exactly one arc. On the other
hand, the in-neighbourhood of 𝑣 , 𝑁 − (𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐴},
is the set of vertices that have an arc leaving them that leads to 𝑣 .
Additionally, the closed out-neighbourhood of 𝑣 is defined to be
𝑁 + [𝑣] = 𝑁 + (𝑣) ∪ {𝑣}. Similarly, the closed in-neighbourhood of
𝑣 is defined to be 𝑁 − [𝑣] = 𝑁 − (𝑣) ∪ {𝑣}. The out-degree of 𝑣 is
𝑑+ (𝑣) = |𝑁 + (𝑣) |, and the in-degree of 𝑣 is 𝑑− (𝑣) = |𝑁 − (𝑣) |. These
are the numbers of vertices directly reachable from 𝑣 and such
that 𝑣 is directly reachable from them, respectively. The minimum
out- and in-degrees of 𝐷 are denoted by 𝛿+ =𝑚𝑖𝑛{𝑑+ (𝑣) | 𝑣 ∈ 𝑉 }
and 𝛿− =𝑚𝑖𝑛{𝑑− (𝑣) | 𝑣 ∈ 𝑉 }, respectively. These are the smallest
degrees found across all vertices in the digraph.
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Given a set of vertices 𝑋 ⊆ 𝑉 , a vertex 𝑣 is said to be covered
by 𝑋 if 𝑁 − [𝑣] ∩ 𝑋 ≠ ∅, i.e. when 𝑣 is either in the set 𝑋 or can be
directly reached via an arc from a vertex in 𝑋 . The set of vertices
covered by 𝑋 is denoted by 𝐶 (𝑋 ) = {𝑣 ∈ 𝑉 | 𝑁 − [𝑣] ∩ 𝑋 ≠ ∅}. The
set 𝑋 is called a dominating set of 𝐷 if 𝐶 (𝑋 ) = 𝑉 , i.e. when every
vertex of 𝐷 is either in 𝑋 or directly reachable from a vertex in 𝑋 .
More generally, for any integer 𝑘 ≥ 1, 𝑣 is said to be 𝑘-covered by
𝑋 if either 𝑣 ∈ 𝑋 or |𝑁 − (𝑣) ∩ 𝑋 | ≥ 𝑘 . In other words, 𝑣 is either in
𝑋 or directly reachable by arcs from at least 𝑘 vertices in 𝑋 . The
set of vertices that are 𝑘-covered by 𝑋 in 𝐷 is denoted by 𝐶𝑘 (𝑋 ),
and 𝑋 is a 𝑘-dominating set of 𝐷 if 𝐶𝑘 (𝑋 ) = 𝑉 . Note that, in these
terms, covering by a set of vertices and a dominating set are simply
the case of 𝑘 = 1.

A 𝑘-dominating set 𝑋 of 𝐷 is minimal (by inclusion) if no vertex
can be removed from 𝑋 without the resulting set losing the 𝑘-
dominating set property, i.e. if we have 𝐶 (𝑋 \ {𝑣}) ≠ 𝑉 for every
𝑣 ∈ 𝑋 . A 𝑘-dominating set 𝑋 of 𝐷 is a minimum 𝑘-dominating set
if there does not exist a 𝑘-dominating set 𝑌 of 𝐷 of a smaller size.
The 𝑘-domination number of a digraph 𝐷 is the size of a minimum
𝑘-dominating set of 𝐷 , which is denoted by 𝛾𝑘 (𝐷). Some basic
theoretical results for the 𝑘-domination number of digraphs can be
found in [16].

Thus, given a digraph 𝐷 , we are interested in the problem of
finding small-sized 𝑘-dominating sets in 𝐷 , while using 𝛾𝑘 (𝐷) as a
quality benchmark, whenever possible. Also, we want to find such
sets of vertices in 𝐷 quickly.

2 HEURISTICS
Recent research focused on efficient bespoke heuristics to search for
small 𝑘-dominating sets in simple graphs [5, 8]. Here we propose
and consider three different greedy heuristic methods to tackle
a similar problem in digraphs. These heuristics are called Basic
Greedy (Algorithm 2), Deficiency Coverage Greedy (Algorithm 3),
and Two-Criteria Greedy (Algorithm 4). A fourth heuristic method,
relying on a combination of greedy and randomized ideas, is also
proposed. Each of the heuristics starts by finding a 𝑘-dominating
set of the digraph, which is usually not minimal (by inclusion).
Therefore, at the end of the four main heuristics, an additional
greedy heuristic is run to remove unnecessary vertices and to reduce
the initially found set to a minimal 𝑘-dominating subset, or to check
minimality of the initially found set. This Minimal 𝑘-Dominating
Subset greedy heuristic is described by Algorithm 1.

2.1 Main Greedy Heuristics
An intuitive basic greedy strategy to find a 𝑘-dominating set in a
simple graph is to start with an empty set 𝑋 and to add vertices
into 𝑋 , one at a time, by choosing iteratively a vertex with the most
vertices in its closed neighbourhood that are not yet 𝑘-covered by
𝑋 . This recursive procedure can be repeated until all vertices of
the graph are 𝑘-covered by 𝑋 , at which point 𝑋 is a 𝑘-dominating
set. This strategy has been studied previously in the context of
domination [1, 17] as well as 𝑘-domination [5, 8] in simple graphs.
This basic greedy strategy generalizes to digraphs by checking
specifically the closed out-neighbourhood of vertices at each step
in iteration. This is described in the pseudocode of Algorithm 2.

Algorithm 1:Minimal 𝑘-Dominating Subset
Input: A digraph 𝐷 = (𝑉 ,𝐴), an integer 𝑘 ≥ 1, a

𝑘-dominating set 𝑋 of 𝐷 .
Output: A minimal 𝑘-dominating set 𝑌 of 𝐷 .
begin

foreach 𝑣 ∈ 𝑋 do
Determine 𝑥𝑣 = |𝑁 + (𝑣) \ 𝑋 |

end
Initialize 𝑌 = 𝑋
while 𝑋 ≠ ∅ do

Find a vertex 𝑣 ∈ 𝑈 = argmin
𝑢∈𝑋

𝑥𝑢

if 𝐶𝑘 (𝑌 \ {𝑣}) = 𝑉 then
Put 𝑌 = 𝑌 \ {𝑣}

end
Put 𝑋 = 𝑋 \ {𝑣}

end
return 𝑌

end

Algorithm 2: Basic Greedy
Input: A digraph 𝐷 = (𝑉 ,𝐴), an integer 𝑘 ≥ 1.
Output: A minimal 𝑘-dominating set 𝑌 of 𝐷 .
begin

Initialize 𝑋 = ∅
while 𝐶𝑘 (𝑋 ) ≠ 𝑉 do

Find a vertex 𝑣 ∈ 𝑈 = argmax
𝑢∈𝑉 \𝑋

|𝑁 + [𝑢] \𝐶𝑘 (𝑋 ) |
Put 𝑋 = 𝑋 ∪ {𝑣}

end
Find a minimal 𝑘-dominating set 𝑌 ⊆ 𝑋
return 𝑌

end

It is important to note that, in the case of 𝑘 > 1, when searching
for a 𝑘-dominating set of a (di)graph, vertices that are not yet 𝑘-
covered by some vertex set 𝑋 can have different numbers of (in-)
neighbours already in 𝑋 . As a consequence, it can be more difficult
to 𝑘-cover these vertices by their (in-)neighbours while expanding
𝑋 in the (di)graph. On the other hand, since including a vertex
into 𝑋 results in 𝑘-covering this vertex regardless of how many
(in-)neighbours the vertex has in 𝑋 , it maybe more interesting to
prioritize adding into 𝑋 the vertices that are not well 𝑘-covered yet
to reduce the amount of vertices ((in-)neighbours) needed for their
𝑘-covering later.

Therefore, given a set of vertices 𝑋 ⊆ 𝑉 of a digraph 𝐷 = (𝑉 ,𝐴)
and an integer 𝑘 ≥ 1, the deficiency of a vertex 𝑣 ∈ 𝑉 \𝑋 is defined
as 𝑙𝑘 (𝑣, 𝑋 ) = max {0, 𝑘 − |𝑁 − (𝑣) ∩𝑋 |}. This represents the amount
of in-neighbours that are still needed to completely 𝑘-cover 𝑣 in
the digraph. Algorithm 3, called Deficiency Coverage Greedy, is
described below. It follows a modified greedy strategy of Basic
Greedy of Algorithm 2. In contrast to Basic Greedy, Deficiency
Coverage Greedy finds 𝑘-dominating sets by selecting vertices not
only by their number of not 𝑘-covered out-neighbours, but also by
the remaining deficiency of the vertex itself.
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Algorithm 3: Deficiency Coverage Greedy
Input: A digraph 𝐷 = (𝑉 ,𝐴), an integer 𝑘 ≥ 1.
Output: A minimal 𝑘-dominating set 𝑌 of 𝐷 .
begin

Initialize set 𝑋 = ∅
while 𝐶𝑘 (𝑋 ) ≠ 𝑉 do

Find a set𝑈 = argmax
𝑢∈𝑉 \𝑋

|𝑁 + (𝑢) \𝐶𝑘 (𝑋 ) | + 𝑙𝑘 (𝑢,𝑋 )

Select 𝑣 ∈ 𝑈 /* uniformly at random */
Put 𝑋 = 𝑋 ∪ {𝑣}

end
Find a minimal 𝑘-dominating set 𝑌 ⊆ 𝑋
return 𝑌

end

Another greedy strategy, introduced and computationally tested
as a part of this research, can be considered as a refinement of
Deficiency Coverage Greedy. In the Deficiency Coverage Greedy
strategy, when several vertices can be used as the best candidates to
be included into a set 𝑋 under construction, the algorithm chooses
one of them uniformly at random. Instead, it is possible to make
choice of the best candidate by considering the out-neighbours of
each of these equally-ranked vertices.

Given a vertex 𝑣 ∈ 𝑉 of a digraph 𝐷 = (𝑉 ,𝐴), we define the total
out-neighbour in-degree of 𝑣 to be 𝑓𝐷 (𝑣) =

∑
𝑢∈𝑁 + (𝑣) 𝑑− (𝑢). The

additional greedy strategy uses the following heuristic assumption
and observations. Since a vertex of low in-degree has fewer possible
ways to be eventually 𝑘-covered in the digraph by its in-neighbours,
if there is no efficient way to 𝑘-cover it, such a vertex is likely to be
included in the 𝑘-dominating set in a later iteration, in particular,
if its out-degree is much higher than its in-degree. Therefore, Al-
gorithm 4, called Two-Criteria Greedy, prioritizes vertices 𝑣 with a
higher total out-neighbour in-degree 𝑓𝐷 (𝑣) in iteration. This is to
discourage adding vertices with lower in-degree out-neighbours,
because such out-neighbours are likely to be included themselves
into the set under construction at a later point of time, which would
reduce effectiveness of including the original vertex during the pro-
cess. This Two-Criteria Greedy method is described in Algorithm 4.

Algorithm 4: Two-Criteria Greedy
Input: A digraph 𝐷 = (𝑉 ,𝐴), an integer 𝑘 ≥ 1.
Output: A minimal 𝑘-dominating set 𝑌 of 𝐷 .
begin

Initialize set 𝑋 = ∅
while 𝐶𝑘 (𝑋 ) ≠ 𝑉 do

Find a set𝑈 = argmax
𝑢∈𝑉 \𝑋

|𝑁 + (𝑢) \𝐶𝑘 (𝑋 ) | + 𝑙𝑘 (𝑢,𝑋 )

Find a vertex 𝑣 ∈ 𝑈 ′ = argmax
𝑢∈𝑈

𝑓𝐷 (𝑢)
Put 𝑋 = 𝑋 ∪ {𝑣}

end
Find a minimal 𝑘-dominating set 𝑌 ⊆ 𝑋
return 𝑌

end

The worst-case complexity analysis shows that all these greedy
heuristics can be implemented to run in 𝑂 (𝑛𝑚) time. This agrees
with our implementation, for which the worst-case analysis pro-
vides a more detailed upper bound of 𝑂 (𝑛(𝑛 +𝑚)).

2.2 Combining with a Randomized Heuristic
Although the algorithms above have some flexibility for the choice
of a vertex at each iteration, they are very restrictive by their greedy
selection nature. To fix this issue and to make them more flexible,
one can try to use analytical tools and add more randomized compo-
nents to the greedy strategies. In other words, we can combine the
greedy strategies, for example, with a basic randomized technique.

A simple and efficient approach to make the greedy strategies
above more flexible can consist in determining an initial random
subset of vertices of a digraph for the greedy heuristics to start
with (instead of an empty set). To do this in a more subtle and
justified way, one can use a probabilistic method and corresponding
analytical tools. Suppose we find an initial subset 𝑋 of vertices for
a 𝑘-dominating set by including (or not) each vertex of the digraph
into 𝑋 with some fixed probability 𝑝 (respectively, 1 − 𝑝). One way
to optimize this probability 𝑝 is to use ideas from the probabilistic
method.

The basic probabilistic method is a well-studied analytical tool
[1, 9, 13], which can be used, for example, to find an upper bound
for the domination number of a simple graph 𝐺 = (𝑉 , 𝐸). It can
be summarized as follows. Suppose we have some probability 𝑝 ∈
[0, 1] to be specified or optimized later. First, find a random subset 𝑆
of vertices of𝐺 by including each vertex of𝐺 into 𝑆 independently
with probability 𝑝 . Then, we have the subset 𝑅 = 𝑉 \ 𝐶 (𝑆) of
vertices which are not covered by 𝑆 in𝐺 . Now, 𝑆∪𝑅 is a dominating
set of 𝐺 , as all the vertices not covered by 𝑆 have simply been
included into the set. The expected cardinality E( |𝑆 ∪𝑅 |) = E( |𝑆 |) +
E( |𝑅 |) of this set can be computed explicitly in terms of 𝑝 and is
an upper bound for the domination number 𝛾 (𝐺). The justification
is straightforward: there must exist at least one dominating set
obtained by using this method which has its cardinality at most the
expected value. Since the expected cardinality can be considered
as a function of 𝑝 , it can be optimized with respect to 𝑝 to give the
best possible upper bound for 𝛾 (𝐺).

This approach has been generalized and applied to 𝑘-dominating
sets in simple graphs. One of the best known results is as follows.

Theorem 2.1 ([9]). Given a simple graph 𝐺 = (𝑉 , 𝐸) with mini-
mum vertex degree 𝛿 and some integer 𝑘 , 1 ≤ 𝑘 ≤ 𝛿 ,

𝛾𝑘 (𝐺) ≤ ©­
«
1 − 𝛿 ′( 𝛿

𝑘−1
)1/𝛿 ′ · (1 + 𝛿 ′)1+1/𝛿 ′

ª®
¬
𝑛,

where 𝛿 ′ = 𝛿 − 𝑘 + 1.
The probability used to find this optimized upper bound in gen-

eral simple graphs is 𝑝 = 1 − 1
𝛿′
√︃( 𝛿

𝑘−1
) (1 + 𝛿 ′) . However, as shown

by the computational experiments in [8], this probability is too high
for the reachability graphs of road networks. Therefore, instead of
the minimum vertex degree 𝛿 = 𝛿 (𝐺), alternative degree parame-
ters of 𝐺 , such as the mean and median vertex degrees, have been
considered and used in the above algebraic expression.
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Although the probabilistic method has been mainly used with
simple graphs, it can be applied to digraphs as well. Lee [13] gener-
alized the basic result of [1] to the domination number of digraphs,
i.e. for the case of 𝑘 = 1. We have obtained the corresponding result
for the 𝑘-domination number of digraphs in general.

Theorem 2.2. Given a digraph 𝐷 = (𝑉 ,𝐴) with minimum in-
degree 𝛿− and some integer 𝑘 , 1 ≤ 𝑘 ≤ 𝛿− ,

𝛾𝑘 (𝐷) ≤ ©­«
1 − 𝛿−′( 𝛿−

𝑘−1
)1/𝛿−′ · (1 + 𝛿−′)1+1/𝛿−′

ª®¬
𝑛,

where 𝛿−′ = 𝛿− − 𝑘 + 1.
After optimization, the probability used to find this upper bound

is 𝑝 = 1 − 1
𝛿−′
√︃( 𝛿−

𝑘−1
) (1 + 𝛿−′) . Therefore, we use this algebraic

expression for probability 𝑝 to find an initial random subset of
vertices in a digraph in an attempt to improve the results of greedy
heuristics of Section 2.1. The complexity of finding an initial random
subset of vertices in such a way is 𝑂 (𝑛2). It takes a linear time to
decide with probability 𝑝 for each vertex 𝑣𝑖 whether to include or
not 𝑣𝑖 in the subset, 𝑖 = 1, 2, . . . , 𝑛. However, computing 𝑝 involves
computing the binomial coefficient, which can be done in 𝑂 (𝑛2)
time in this case.

3 EXPERIMENTAL RESULTS
A number of computational experiments were run to test the heuris-
tics from Section 2 and to compare and analyze the results. Two
different types of digraphs were used in these experiments. Di-
graphs of the first type are randomly generated by using the so-
called Erdős–Rényi (ER) random digraph model. This consists in
taking a set of vertices, and, by using some fixed probability 𝑝 ,
independently for each ordered pair of vertices, we decide whether
the corresponding arc is in the digraph or not. Note that the two
possible arcs between a pair of vertices are considered separately
and therefore included or not into the digraph independently from
each other.

The second type of digraphs are so-called reachability digraphs
derived from actual road networks. A similar concept of a reachabil-
ity graph is defined in [8] for simple graphs. In the reachability di-
graph model, vertices represent some locations in the road network.
An arc from one vertex to another is included into the reachability
digraph if it is possible to travel from the location corresponding to
the first vertex to the location of the other vertex within a certain
predefined road distance. The maximum travelling distance to have
an arc is called the reachability radius (𝑟 ) in the road network. In
comparison to the ER random digraphs, the reachability digraphs
are more similar to simple graphs, because many streets support
two-way traffic. However, although most connections in a reacha-
bility digraph are two-way, there is still a non-negligible number
of one-way connections that would be ignored in a simple graph
model. This is illustrated in Figure 1, where the arcs originating
from the blue vertex are leading only to the red veritices.

Before running computational experiments on large digraph in-
stances, we considered small size digraphs to be able to obtain some
exact solutions. This allows us to compute 𝛾𝑘 (𝐷) to compare the

Figure 1: A vertex (blue) and its out-neighbours (red) in a
reachability digraph.

greedy heuristics results. The exact deterministic solutions were ob-
tained by solving an integer-linear programming (ILP) formulation
of the problem by using Gurobi 10.0.1 [11]. We used the following
ILP formulation:

minimize 𝑧 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑛∑︁
𝑖=1

𝑥𝑖

subject to: 𝑘𝑥𝑖 +
∑︁

𝑣𝑗 ∈𝑁 − (𝑣𝑖 )
𝑥 𝑗 ≥ 𝑘, 𝑖 = 1, . . . , 𝑛

𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑛,

where 𝑥𝑖 is a binary variable indicating whether vertex 𝑣𝑖 of the
digraph is included in the 𝑘-dominating set or not, 𝑖 = 1, . . . , 𝑛.
When it was not possible to solve the problem of computing 𝛾𝑘 (𝐷)
in a reasonable amount of time, the generic ILP solver was run as
an alternative heuristic solver using a substantial amount of CPU
time resources.

We have considered 𝑘-domination for 𝑘 = 1, 2, 4, 8. For some
small-size digraphs, the deterministic method (ILP) was able to
return an optimal solution within a reasonable timeframe for lower
values of 𝑘 , but started experiencing infeasibly large runtimes for
higher values of 𝑘 . Therefore, a time limit of 24 hours was imposed
and, if it was reached, the best solution found so far (i.e. heuristic)
would be recorded instead of the exact solution. The experiments
were conducted by using C++ on a PC with a 3.00 GHz Intel Core i5
processor and 16 GB of RAM, running Windows 10 Education, ver-
sion 21H2. In the tables,𝑚𝑎𝑥 denotes the 24-hour time limit for the
ILP solver; BG, DCG, and TCG stand for Basic Greedy, Deficiency
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𝑛 𝑘
ILP BG DCG TCG
Size Time (s) Size Time (s) Size Time (s) Size Time (s)

100
1 12 0.2 14 0.00057 12 0.00059 12 0.00055
2 21 1.98 24 0.00067 24 0.00073 24 0.00069
4 36 5.72 45 0.0009 38 0.00091 40 0.00084
8 64 1.46 71 0.0011 66 0.0012 66 0.0011

200
1 15 564.9 19 0.0014 17 0.0014 16 0.0014
2 25 𝑚𝑎𝑥 28 0.0015 27 0.0016 27 0.0015
4 44 𝑚𝑎𝑥 47 0.003 47 0.0021 46 0.0019
8 76 𝑚𝑎𝑥 85 0.0027 83 0.0041 83 0.0071

Table 1: 𝑘-Dominating sets in small Erdős–Rényi digraphs.

𝑛 𝑘
BG DCG TCG
Size Time (s) Size Time (s) Size Time (s)

50, 000

1 52 21.95 51 22.34 52 25.47
2 73 23.27 72 21.68 72 25.95
4 105 23.21 104 21.65 105 26.29
8 165 23.72 164 23.16 163 25.9

100, 000

1 58 1654 58 1392 57 1407
2 78 1470 78 1422 78 1453
4 113 1521 113 1576 112 1587
8 174 1574 173 1646 172 1598

Table 2: 𝑘-Dominating sets in large Erdős–Rényi digraphs.

Coverage Greedy, and Two-Criteria Greedy, respectively. Prelim-
inary experiments with the greedy algorithms combined with a
randomized heuristic of Section 2.2 have not shown any improve-
ments in the case of Erdős–Rényi digraphs yet. However, they do
show some improvements in the case of reachability digraphs of
road networks (not included in the tables).

3.1 Erdős–Rényi digraphs
All of the Erdős–Rényi digraphs used in these experiments were
generated using arc inclusion probability of 𝑝 = 0.1. The digraphs
for the small-scale experiments had 𝑛 = 100, 150, and 200 vertices,
whilst the large-size digraphs contained 25, 50, 75, and 100 thousand
vertices. An experiment on a digraph with 125 thousand vertices
was also attempted, but the computer ran out of memory. Some of
the results of these experiments are presented in Tables 1 and 2.

Table 1 shows that the proposed greedy heuristics solve the
small-size instances of the problem in milliseconds, while the solu-
tion quality is comparable to the exact or heuristic ILP solutions
after running the generic ILP solver on these test instances for a
much longer period time (from 103 to 105 times longer to obtain an
exact solution, and 107 times longer to obtain alternative heuristic
solutions). Also, Tables 1 and 2 show that, among the three greedy
solvers, DCG and TCG usually provide better results, and their run-
times are always within a reasonable time limit (less than 30min
for a digraph on 100, 000 vertices).

3.2 West Midlands Conurbation road networks
We constructed digraphs corresponding to road networks by using
OpenStreetMap (OSM) geographic information system data [15].
The corresponding road networks are comprised of all roads con-
tained within a square box, the center of which is the Birmingham
New Street train station in the United Kingdom (exact coordinates:

52.478691, -1.89984). The digraphs for the small-scale experiments
are given by the box side-lengths of 1, 1.25, 1.5, 1.75, and 2 kilo-
meters, with reachability radii of 𝑟 = 300, 325, 350, 375, and 400
meters, respectively. The large size digraphs are given by the box
side-lengths of 10, 20, 30, 40, and 50 kilometers, with the reachability
radii of 3, 4, 5, 6, and 7 kilometers, respectively. An experiment on a
digraph corresponding to a road network of the box side-length of
60 kilometers and with the reachability radius of 8 kilometers was
attempted, but the computer ran out of memory. Some of the results
of these computational experiments are presented in Tables 3 and
4 below.

Similarly to the small Erdős–Rényi digraphs, Table 3 shows that
the solution quality of the proposed greedy heuristics is comparable
to the exact or heuristic ILP solutions after running the generic ILP
solver on these small reachability digraphs for a much longer time
(one to three orders of magnitude more time to obtain exact ILP
solutions, and five to six orders of magnitude more time to obtain
alternative heuristic solutions). Also, Table 3 shows that, for the
small reachability digraphs, when 𝑘 > 1, TCG usually provides bet-
ter results than the other two greedy heuristics, and the advantages
of DCG and TCG over BG become more visible for the larger values
of 𝑘 . For the large reachability digraphs, Table 4 shows that TCG
provides the best results for all but two problem instances (out of
twelve), which are better solved by DCG. BG is still competitive
for 𝑘 = 1, but for larger values of 𝑘 > 1, the advantages of DCG
and TCG are more visible again. Notice that, for 𝑘 = 1, DCG would
normally produce the same results as BG (TCG has the secondary
selection criterion, which comes into play even when 𝑘 = 1). How-
ever, the random choice of a vertex among the equally most suitable
candidates in iteration of DCG produces slightly different from BG
results and introduces the option of running the algorithm several
times to potentially obtain better results. The runtimes of greedy
heuristics on the same digraph instance are always comparable, and
within a reasonable time limit (less than 30min for the reachability
digraph on 225289 vertices).

4 CONCLUDING REMARKS
In this research, we have considered and accentuated using di-
graphs for modelling problems in road networks, introduced the
concept of a reachability digraph corresponding to a road network,
proposed modelling and optimization of facility locations in road
networks by considering 𝑘-dominating sets in digraphs. By refining
some greedy criteria, we have devised and computationally tested
three different greedy heuristics, shown and discussed their per-
formance with respect to some exact (or near-exact) solutions and
each other by using two types of digraphs. To make the greedy
heuristics more flexible and to improve their performance further,
some randomization ideas are proposed as well.

Current and future research will focus on the randomization
techniques to make these greedy heuristics more flexible and effec-
tive, and to be able to improve the obtained results for large-scale
digraphs efficiently. We also plan to consider more subtle domi-
nation models in digraphs and more involved heuristic solution
strategies, for example, applications and modifications of the local
search. To help with exact solutions for small size problem instances
in digraphs, we plan to consider devising customized deterministic
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Square Radius, #Vertices, #Arcs,
𝑘

ILP BG DCG TCG
size 𝑟 𝑛 𝑚 Size Time (s) Size Time (s) Size Time (s) Size Time (s)

1km x 1km 300m 614 8,546

1 61 0.11 66 0.0057 66 0.0069 67 0.0063
2 108 0.24 118 0.0085 114 0.011 113 0.0086
4 195 5.9 220 0.012 211 0.014 210 0.012
8 341 170.8 387 0.017 355 0.019 358 0.015

2km x 2km 400m 2,354 56,306

1 136 0.16 154 0.044 152 0.055 148 0.045
2 259 7.35 294 0.064 287 0.076 283 0.06
4 485 𝑚𝑎𝑥 561 0.11 538 0.14 525 0.11
8 896 𝑚𝑎𝑥 1044 0.17 963 0.19 963 0.15

Table 3: 𝑘-Dominating sets in small reachability digraphs of Road Networks.

Square Radius, #Vertices, #Arcs,
𝑘

BG DCG TCG
size 𝑟 𝑛 𝑚 Size Time (s) Size Time (s) Size Time (s)

10km x 10km 3km 38,506 52,571,274

1 88 3.95 91 3.9 86 4.36
2 151 3.88 149 4.05 145 4.61
4 260 4.27 259 4.4 257 4.92
8 452 4.91 450 5.2 439 5.79

30km x 30km 5km 131,969 423,758,564

1 232 49.82 235 58.65 232 50.81
2 398 36.54 400 31.91 393 36.55
4 708 44.61 691 39.77 696 49.5
8 1275 49.55 1217 47.55 1213 49.82

50km x 50km 7km 225,289 1,063,778,792

1 338 411.1 334 413.7 331 371.2
2 570 334.5 571 417.6 560 398.9
4 982 455.5 962 401.2 964 449
8 1752 494.5 1695 543.1 1689 494.1

Table 4: 𝑘-Dominating sets in large reachability digraphs of Road Networks.

algorithms. Notice that some recent research (see [14]) focused on
greedy heuristics to search for small weight dominating sets in
vertex-weighted digraphs.
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3 HEURISTICS OVERVIEW

Heuristics for improving bicycle networks
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2La compagnie des Mobilité,Tours, France

1 Introduction
In this paper we are interested in the improvement of a bicycle network in order to increase the overall
safety of cyclists. At a time when the development of low-GHG mobility is a key issue for all cities, it now
seems necessary to deploy cycling facilities intelligently in order to increase the safety of cyclists [3, 2, 6].

The problem we address here is to use a set of GPS tracks corresponding to the routes taken by
cyclists to propose improvements to the bicycle network within a given budget. The tool is designed
to help local authorities plan the expansion of their bicycle network. Previous work has focused on a
mathematical model whose application to real instances has proved to be limited [4].

2 Problem presentation
We have a graph describing the network (road network and its bicycle facilities), and for each arc costs
representing the distance and insecurity of the arc before and after possible improvements. We assume
that the cost of an improvement is proportional to the distance of the modified arc. The coefficient
of proportionality depends on the type of improvement and the maximum speed of the vehicles if the
infrastructure is shared between cyclists and cars. We also consider a set of user paths, i.e. paths taken
by cyclists on the graph. These paths are obtained from real sets of GPS-traces. For each path a user
preference between distance and insecurity is determined. This preference is recalculated according to the
path taken by the user and the shortest and safest paths between his origin and his destination. Finally,
to carry out these improvements we have a maximal budget, corresponding to the maximum length of
lanes that can be improved, e.g, building bike-lane.

The aim is to propose a set of arcs that, improve (1) the user’s effort, i.e. that allow the cyclists to
benefit from a better path in terms of the preference established (trade-off between distance and safety)
from their starting point to their destination, (2) the intrinsic properties of the graph. For these later
criteria we will consider a number of indicators of the cyclability of the network, such as the coverage
of the network by bicycle facilities, the number of connected components, the size of the connected
components and the resilience of the network (the possibility of connecting two vertices of connected
components when an arc is deleted)[7].

An Integer Linear Programming (ILP) formulation has already been proposed for this problem mini-
mizing the overall effort of cyclists. This ILP model will allow us to evaluate the behavior of the heuristics
on small instances, or on real graphs, considering a reduced number of traces [4] (see Tab.1 for details).

3 Heuristics overview
We present here a few heuristics based on works in the literature adapted to our problem.

Heuristics based on network topology. These methods seek to improve the connectivity of the
bicycle network by connecting connected components as in [5]. Two versions are proposed: Largest to
Second which aims to connect the largest connected component to the second largest one and Largest to
Closest which aims to connect the largest connected component to the closest one. In both cases, all paths
connecting the two connected components are tested, within the limits of the remaining budget. Once
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# Nodes # Arcs # Traces # already upgraded arcs
Synthetic 1246 3819 1000 479

Tours 43 709 108 473 4194 10 192
Paris 53 222 126 280 52 949 24 566

Table 1: Size of synthetic and real instances

the two components are connected, the size of the merged component is recalculated and the heuristic
iterates as long as the remaining budget is non-zero.

Heuristics based on cyclists’ use of the network. From the user traces we can associate each
arc with a frequency, i.e. the number of traces passing through this arc. The heuristic inspired by [1]
seeks to make bicycle networks grow by preserving the characteristic of connectivity while taking into
account this frequency. Improvable arcs are therefore arcs connected to an existing bicycle infrastructure.
Among those arcs that can be upgraded, the one with the highest ridership and whose upgrading cost is
less than the remaining budget is chosen. Arcs connected to this new upgraded arc become improvable.
The process is repeated as long as the budget is not zero.

Heuristics based on cyclists’ traces. This heuristic aims to evaluate, for each arc, the potential
gain that users can derive from its improvement. For this purpose, for each user, the best path, integrating
user preference, is recalculated assuming the arc is upgraded. If the user’s effort improves considering
this upgrade, the gain for the user is considered. The gain of an arc is the sum of gains from all users.
The chosen arc for improvement is the one with the highest gain within the remaining budget limit. This
process iterates as long as the budget is not zero.

4 Conclusion and Future works
The results of these heuristics will be presented at the conference. Their performances will be compared
with the results obtained by the ILP formulation, which only considers the criterion of total user effort,
on reduced instances (either in terms of network size or number of traces considered). We will also present
results on real instances (cities of Tours and Paris, with a significant number of traces). Finally, prospects
for improving the bicycle network will be discussed, both in terms of the fairness of the improvements
adopted in relation to different users, and in terms of resolving discontinuities in the bicycle network:
the continuity of an end-to-end network, with a certain level of safety, is often considered a key factor in
users’ decisions to bicycle.
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ABSTRACT
We study a prospective transportation system where vehicles pro-
vide dial-a-ride services to fulfill a very large scale of passenger
requests (around 300,000). The system operates dynamically, with
newly submitted requests needing immediate processing. A crucial
aspect of this system’s viability in real-time situations is there-
fore the implementation of an efficient routing algorithm that can
deliver high-quality solutions. We address a dynamic large-scale
dial-a-ride problem through a best-fit greedy insertion algorithm.
Furthermore, large-scale requests are assumed to be dominated by
daily commuting needs and thus should be similar and repetitive
from one day to another. Therefore, there might exist recurring and
similar patterns in vehicle trajectories if similar requests can be
served in the samemanner. We introduce a Guided InsertionMecha-
nism that relies on a representative reference resolution and guides
the insertion of dynamic requests while maintaining high-quality
solutions.

1 INTRODUCTION
In recent years, we have witnessed the emergence of novel trans-
portation systems, offering efficient and sustainable alternatives to
traditional modes of transportation. Among these, vehicle-sharing
and ride-sharing systems are two predominant categories. In vehicle-
sharing systems, vehicles positioned at stations are left for access
by users. Related problems can be about the design of the systems,
such as where to position the stations and how to relocalize vehicles
[8]. Ride-sharing services allow users to share common journeys
in the same vehicle. The most common problems are about the
effective routing and scheduling of vehicles that take advantage of
the mutualization of different services [1, 7]. Both systems promote
reduced congestion and emissions while maximizing vehicular uti-
lization. Dail-A-Ride (DAR) system can be regarded as a hybrid of
the above two categories, where vehicles are owned by operators
and provide demand-responsive transportation services to fulfill

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-095-0 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

the diverse needs of various communities and enhance accessibility
across urban transit systems.

In this paper, we consider a prospective transportation system
where a mid-capacity vehicle fleet offers Dial-A-Ride (DAR) ser-
vices to a very large volume of passengers (around 300, 000 per day),
catering to the transportation needs of a vast user base. The system
operates in a dynamic context, where user requests are submitted
and processed on-the-fly. Therefore, to ensure the viability of the
system, we need to implement a routing algorithm that is both
efficient and capable of delivering high-quality solutions. For that,
we address a dynamic large-scale dial-a-ride problem. Due to the
large-scale aspect, it is difficult to solve the problem through exact
methods(e.g., branch and bound, branch and cut, etc.) or local search
approaches (e.g., Large Neighborhood Search, Build and Destroy,
etc). We rely on the classic greedy insertion heuristic for its sim-
plicity and effectiveness. Furthermore, we consider that large-scale
requests should be dominated by daily commute needs which ex-
hibit recurring characteristics. Therefore, daily requests should be
globally similar and repetitive. Under this assumption, we should be
able to recreate similar travel patterns in vehicle trajectories. Based
on this idea, as our main contribution to this work, we propose a
Guided Insertion Mechanism (GIM) which utilizes the travel patterns
constructed from a representative reference resolution to efficiently
insert dynamic requests while maintaining the high quality of the
routing solution.

The remainder of this paper is organized as follows: In Section 2
we introduce some related works in the literature. Section 3 for-
mally defines our problem and introduces some important notation.
Section 4 introduces the notion of insertion of a request. In Section 5,
the solution scheme is outlined. Then, in Section 6, we detail the
GIM. Experimental results are presented and discussed in Section 7
and we conclude in Section 8.

2 RELATEDWORKS
On-demand DAR transportation systems provide personalized and
efficient transportation services to customers. These systems utilize
digital platforms and shared mobility concepts, offering convenient,
flexible, and cost-effective travel choices. As the need for efficient
urban transportation increases, there is a rising prevalence of stud-
ies focusing on large-scale systems. Studies are actively studying
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various system characteristics, encompassing the management of
congestion issues resulting from the substantial vehicle fleet size
[13], addressing recharging challenges in scenarios involving elec-
tric vehicles [2], and exploring the potential advantages of introduc-
ing ride-sharing into these systems [6]. In customer-facing systems
like these, the rapid processing of user demands during dynamic
scenarios is crucial. Hence, expediting the routing and scheduling
process holds vital significance. The authors in [16] study a large-
scale taxi system that serves at least 330, 000 requests per day. To
provide instant feedback in response to dynamic requests, they
introduce a filtering algorithm dual-side taxi searching that rapidly
retrieves some interesting (nearest) vehicles to be candidates to
service the given request. Similarly, in [14], the authors propose
a filtering system that not only provides candidate vehicles but
corresponding candidate insertion positions within the routes as
well.

Within the context of DAR transportation systems, we naturally
rely on the Dial-A-Ride Problem (DARP) to formulate the problem.
Designing a fleet of vehicles’ routes and schedules to accommodate
a set of passenger requests—typically defined by a pickup location, a
drop-off location, pickup and/or drop-off time windows, and a max-
imum ride time—is the basis of DARP. Objectives like maximizing
customer service quality or reducing vehicle operating costs guide
decisions [10]. DARP is NP-hard as it admits the Vehicle Routing
Problem (VRP) as a special case. Very few studies seek to solve
the DARP using exact optimization methods, unless for solving
small-sized static problems [4, 15]. More studies tend to propose
approximate methods capable of solving larger instances, such as
tabu search meta-heuristics [5], Large Neighborhood Search (LNS)
[9]. For example, [3] proposes a two-phase scheduling heuristic
that first builds an auxiliary graph and then solves an assignment
problem on this graph.

Furthermore, in a very large-scale context, daily travel requests
are supposed to obey a certain repetitive pattern because they
should be dominated by regular commuting needs. This makes
capturing the daily mobility patterns of requests a hot topic in the
literature. If sufficient historical daily instances are available, this
task can be achieved through some machine learning or deep learn-
ing approaches [18, 19]. On the other hand, due to the similarity in
passengers’ travel requests, the trajectories of vehicles supporting
these requests should also exhibit some regular travel patterns. In
[12], the authors propose a graph-based analysis framework that
characterizes spatial and temporal patterns of network-wide traffic
flows. In [11], a trajectory clustering method is presented to dis-
cover spatial and temporal travel patterns in a traffic network. In
this paper, we do not take care of extracting travel patterns from
historical events and assume that a sufficiently representative refer-
ence request instance in our DAR system is available. We introduce
a Guided Insertion Mechanism (GIM) that uses a set of simplified
routes that we call vehicle travel patterns established by solving
the related reference problem to help solve a large-scale dynamic
DARP more quickly. To the best of our knowledge, we are the first
to consider the correlation between vehicle travel patterns and the
resolution of DARP. Additionally, we offer a formal representation
of these vehicle travel patterns, providing a framework applicable
in resolving DARP.

3 PROBLEM STATEMENT
In this section, we define our Large-Scale Dial-A-Ride Problem
(LSDARP).

We consider a transit network G = (N ,A), where N contains
all the intersections, andA contains all the arcs in the network. We
only consider one depot, denoted by 𝑛0 ∈ N in G. The travel time
of an arc (𝑖, 𝑗) ∈ A, 𝑖, 𝑗 ∈ N2, is denoted by 𝑡 (𝑖, 𝑗). By extension,
we use 𝑡 (𝑢, 𝑣) to denote the shortest travel time from any node 𝑢
to any node 𝑣 in the network.

A request 𝑟 ∈ R is submitted at time 𝑡𝑟
𝑠𝑢𝑏

with the following
information: a pickup service requirement 𝑂𝑟 , a drop-off service
requirement 𝐷𝑟 and the number of involved passengers 𝑞𝑟 . The
pickup service𝑂𝑟 includes an origin 𝑜𝑟 ∈ N and a pickup time win-
dow [𝑒𝑂𝑟 , 𝑙𝑂𝑟 ]. And the drop-off service 𝐷𝑟 includes a destination
𝑑𝑟 ∈ N and a maximum ride time 𝑇 𝑟 . We note that service times
are not considered, and all requests are supposed to be feasible and
non-preemptive, which means that each request must be fulfilled
exactly once by exactly one vehicle.

Passengers are serviced by a fleetV of vehicles of capacity 𝑄 . A
route 𝜃 𝑣 ∈ Θ followed by a vehicle 𝑣 is a list of key points 𝐾 that
aggregates services happening at the same location at the same
time. Typically, a key point 𝐾 contains: 𝑛𝐾 ∈ N , the location of
the service; 𝑞𝐾 , the load of 𝑣 before departing from 𝑛𝐾 ; 𝑅+𝐾 , the list
of requests scheduled to get onboard at 𝐾 ; 𝑅−𝐾 , the list of requests
scheduled to get off at 𝐾 ; [𝑒𝑎𝐾 , 𝑙𝑎𝐾 ], the arrival time window at 𝑛𝐾 ;
and [𝑒𝑑𝐾 , 𝑙𝑑𝐾 ], the departure time window from 𝑛𝐾 . Let 𝑠𝑢𝑐𝑐 (𝐾)
denote the successive key point of 𝐾 . For any request 𝑟 assigned to
𝑣 , we use 𝐾 (𝑂𝑟 ) ∈ 𝜃 𝑣 (resp. 𝐾 (𝐷𝑟 )) to denote the key point where
𝑂𝑟 (resp. 𝐷𝑟 ) is inserted.

When providing services, 𝑣 follows the earliest arrival time 𝑒𝑎𝐾
and earliest departure time 𝑒𝑑𝐾 . Vehicle routes must start, end at
the depot 𝑛0, and have a load that never exceeds vehicle capacity.
And for every request 𝑟 assigned to the vehicle, 𝑂𝑟 precedes 𝐷𝑟 ,
and the schedule must not violate the pickup time window and the
maximum ride time constraints.

We consider a lexicographic objective function. We assume that
the number of vehicles is unlimited, so minimizing the fleet size is
the primary objective. The total drive time of vehicles is considered
the second criterion.

4 INSERTION OF A REQUEST
Given a triplet of insertion parameters (𝜃 𝑣, 𝐾𝑜 , 𝐾𝑑 ), we introduce
the procedure INSERTION (𝑟, 𝜃 𝑣, 𝐾𝑜 , 𝐾𝑑 ) that inserts 𝑟 into the route
𝜃 𝑣 at positions 𝐾𝑜 and 𝐾𝑑 .

We first insert the pickup service𝑂𝑟 . If 𝑛𝑂𝑟 = 𝑛𝐾𝑜 , we aggregate
𝑂𝑟 to 𝐾𝑜 and 𝐾 (𝑂𝑟 ) = 𝐾𝑜 ; otherwise, a new key point 𝐾 (𝑂𝑟 )
supporting 𝑂𝑟 will be inserted between 𝐾𝑜 and 𝑠𝑢𝑐𝑐 (𝐾𝑜 ). In both
cases, the load 𝑞𝐾 (𝑂𝑟 ) , in inbound request list 𝑅+

𝐾 (𝑂𝑟 ) , and the
pickup and drop-off time windows on 𝐾 (𝑂𝑟 ) should be updated
while considering the constraints about the vehicle and requests
mentioned previously. Same rules applied for the insertion of the
drop-off service 𝐷𝑟 at 𝐾𝑑 . We note that when updating the arrival
time windows of𝐾 (𝐷𝑟 ), we need to take into account the maximum
ride time 𝑇 𝑟 of 𝑟 .
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Once 𝑂𝑟 and 𝐷𝑟 are inserted, we increase the load of key points
between 𝐾 (𝑂𝑟 ) and𝐾 (𝐷𝑟 ) by 𝑞𝑟 while ensuring that the new loads
never exceed the vehicle capacity 𝑄 . We should also update the
time windows of the key points along 𝜃 𝑣 and checking that these
time windows are never empty. For that, we implement a classic
constraint propagation procedure ([17]) considering the above time
constraints. The procedure has a complexity of 𝑂 ( |𝜃 𝑣 |2), where
|𝜃 𝑣 | is the number of key points in 𝜃 𝑣 .

5 ALGORITHM FRAMEWORK
We define a set of decision epochs E = {𝐸0, 𝐸1, . . . , 𝐸𝑖 , . . . , 𝐸 |𝐸 |−1}.
Each decision epoch lasts 𝐼𝑒 (for example, 𝐼𝑒 = 10 min) time units.
The starting time of 𝐸𝑖 is 𝑡𝐸𝑖 = 𝑖 × 𝐼𝑒 . For each decision epoch
𝐸𝑖 ∈ E,

(1) during the time slot [𝑡𝐸𝑖 , 𝑡𝐸𝑖 + 𝜏], where 𝜏 defines the maxi-
mum decision duration, the system makes the routing deci-
sions for requests submitted during the previous epoch 𝐸𝑖−1,
denoted by R𝐸𝑖−1 ;

(2) at time 𝑡 = 𝑡𝐸𝑖 + 𝜏 , the system updates the vehicles’ sched-
ules, and informs unserved passengers whose requests have
already been inserted about the updated information about
their pickup (the vehicle’s passage time);

(3) following the update, vehicles start implementing the new
routes until reaching 𝑡 = 𝑡𝐸𝑖+1 + 𝜏 .

Regarding the very large size of the problem and the need to
make decisions on-the-fly, we address the problem to be solved
for each decision epoch 𝐸 based on the classic best-fit insertion
heuristic. During epoch 𝐸, requests R𝐸 are inserted one by one
following a specific order, and for each request 𝑟 , we try to insert
it according to the best-fitted insertion parameters that minimize
the insertion cost measured by the detour to service 𝑟 . Depending
on the implementation, searching for insertion parameters among
the whole search space Θ would generally require a computational
effort of 𝑂 ( |𝜃 𝑣 |2). In addition, testing the insertion feasibility and
the INSERTION process are also computationally expensive, as
mentioned in Section 4. Due to the large-scale effect, the search
space would contain thousands of vehicles along with hundreds of
thousands of insertion positions to explore, which can be too large
to fit the dynamic need. For that, we introduce a guided insertion
mechanism upstream of the best-fit insertion that rapidly and wisely
selects well-fitted insertion parameters and tries several valuable
insertions.

Then, given a request 𝑟 ∈ R and the current route collection
Θ = {𝜃 𝑣, 𝑣 ∈ V}:

• We first invoke the Guided Insertion Mechanism (GIM) which
uses knowledge learned from representative historical in-
stances and solutions to guide the insertion of 𝑟 . If a feasible
insertion is found, we keep it.
• If GIM fails, we invoke a best-fit insertion heuristic over the
entire search space Θ, and try to insert 𝑟 into the best-fitted
vehicle route at the insertion positions (i.e., key points) that
minimize the insertion cost.
• Finally, if both of the above steps fail, we activate a new
vehicle 𝑣 to serve 𝑟 and add 𝜃 𝑣 to the current route set Θ.

6 THE GUIDED INSERTION MECHANISM
In this section, we introduce the Guided Insertion Mechanism (GIM).
Let us use LSDARP(R) to denote the problem with an input in-
stance R. Consider two similar request sets R1 and R2 in a way
that for most of the requests in R1, we can find a similar request
in R2. Then we believe that the optimal routing solution Θ1 to the
problem LSDARP(R1) should be similar toΘ2, the optimal solution
to the problem LSDARP(R2). Because if 𝑟1 ∈ R1 and 𝑟2 ∈ R2 are
similar, they should be able to be inserted in a similar manner.

GIM is conceived based on the above idea. Thanks to the large-
scale aspect and the fact that requests should be dominated by
recurring daily commute requests, we assume that requests to be
processed in the DAR systems are similar from one day to another.
Therefore, the travel patterns of vehicles should also be similar
from one day to another. Assuming that we have a representative
reference set R̄ which captures the basic distribution (origin and
destination and pickup times) of requests, then the static (i.e., off-
line) optimal solution Θ̄ to the problem LSDARP(R̄) should be able
to guide any dynamic (i.e., on-line) resolution of any real problem
LSDARP(R), where R is the set of real dynamic requests to be
processed in the service period.

Extracting the daily mobility patterns of requests in an under-
lined system and solving the associated static problem to optimal
are two independent problems. As mentioned previously, in this
paper, we do not take care of either of the above-mentioned prob-
lems and assume that a representative reference set R̄ generated
based on the daily request distribution is in our possession, along
with its off-line (near) optimal solution Θ̄. We are interested in how
the references (R̄, Θ̄) can be informative and guide the insertion
when solving a similar real dynamic problem LSDARP(R).

6.1 Preprocessing: Obtain Vehicle Travel
Patterns

For each reference route 𝜃 ∈ Θ̄, we compute a specific travel pattern
𝛾 (𝜃 ) ∈ Γ during the preprocessing phase. A travel pattern 𝛾 (𝜃 ) is
a simplified route defined as a list of pattern points, where each
pattern point 𝑃 represents a cluster of key points in 𝜃 . The notion
of key point cluster is defined as follows:

Definition 6.1 (key point cluster). Given a route𝜃 = {𝐾0, . . . , 𝐾𝑖 , . . . ,
𝐾𝑀−1} with𝑀 key points, {𝐾𝑖 , 𝐾𝑖+1, . . . , 𝐾𝑖+𝑚} is a key point cluster
if and only if:

𝑡 (𝐾𝑖+𝑗 − 𝐾𝑖+𝑗−1) ⩽ 𝛿𝐾 , for 1 ⩽ 𝑖 ⩽ 𝑚,

𝑡 (𝐾𝑖−1, 𝐾𝑖 ) > 𝛿𝐾 , for 𝑖 > 0,
and

𝑡 (𝐾𝑖+𝑚, 𝐾𝑖+𝑚+1) > 𝛿𝐾 , for 𝑖 < 𝑀 − 1 −𝑚,
where 𝛿𝐾 is the clustering threshold indicating the maximum travel
time from a key point to its successor that are in the same cluster.

For example, in Figure 1 where three partial routes are shown,
we see that 𝐾2, 𝐾3 and 𝐾4 represent a key point cluster, so in the
travel pattern 𝛾 (𝜃 ), they are represented by a pattern point 𝑃2.

The travel patterns are used in the guided insertion process. In
GIM, each pattern guides the construction of at most one real route
𝜃 ∈ Θ. Specifically, if a real key point 𝐾 ∈ 𝜃 is created via GIM
under the guidance of a pattern point 𝑃 ∈ 𝛾 , then we call 𝐾 a child
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Figure 1: Illustration of the relationships between the refer-
ence route, the travel pattern, and the real route

of 𝑃 . Any point 𝑃 ∈ 𝛾 may project to several children in 𝜃 . For each
point 𝑃 ∈ 𝛾 , we define two pointers 𝑙𝑐𝑃 and 𝑟𝑐𝑃 , where 𝑙𝑐𝑃 points
at the preceding key point of the left-most child of 𝑃 , and 𝑟𝑐𝑃 points
at the right-most child of 𝑃 . For example, in Figure 1, 𝑙𝑐𝑃2 points at
𝐾1, and 𝑟𝑐𝑃2 points at 𝐾3. For any 𝑃 , both 𝑙𝑐𝑃 and 𝑟𝑐𝑃 are initialized
as null pointers during the preprocessing process.

6.2 Guided Insertion Process
Given a real request 𝑟 , GIM operates according to the following
steps.

6.2.1 Step 1: Retrieve similar reference requests. We first identify
from R̄ all the reference requests 𝑟 that are similar to 𝑟 . The simi-
larity between requests is defined as follows:

Definition 6.2 (similarity between requests). Two requests 𝑟1 and
𝑟2 are similar if and only if 𝑡 (𝑜𝑟1 , 𝑜𝑟2 ) ⩽ 𝛿𝑠 , 𝑡 (𝑑𝑟1 , 𝑑𝑟2 ) ⩽ 𝛿𝑠 , and
|𝑒𝑂𝑟1 −𝑒𝑂𝑟2 | ⩽ 𝛿𝑡 , where 𝛿𝑠 is a threshold indicating the maximum
travel time between two locations, and the threshold 𝛿𝑡 indicates
the maximum difference in the earliest pickup time between 𝑟1 and
𝑟2.

If 𝑟1 and 𝑟2 satisfy the above conditions, we use |𝑒𝑂𝑟1 − 𝑒𝑂𝑟2 | to
define their similarity measure. Let R̄𝑟 denote the set of retrieved
similar reference requests. The set R̄𝑟 is sorted according to the
descending order of their value of similarity measure with 𝑟 .

6.2.2 Step 2: Construct guide object set. Next, we construct a set of
guide objects, denoted by 𝐺𝑂𝑟 . A guide object is a triplet (𝛾, 𝑃𝑜 , 𝑃𝑑 )
used to guide the guided insertion of 𝑟 , where 𝑃𝑜 and 𝑃𝑑 are two
pattern points in the travel pattern 𝛾 . For example, as illustrated in
Figure 1, a reference request 𝑟 inserted in 𝜃 at𝐾 (𝑂𝑟 ) and𝐾 (𝐷𝑟 ) cor-
responds to the guide object (𝛾 (𝜃 ), 𝑃𝑜 , 𝑃𝑑 ). Then,𝐺𝑂𝑟 is constructed
by sequentially capturing and organizing the corresponding guide
objects of all the reference requests 𝑟 in alignment with the order
specified in R̄𝑟 . We note that it is possible that several reference
requests may correspond to the same guide object. In 𝐺𝑂𝑟 , we only
keep one occurrence of the same guide objects.

6.2.3 Step 3: Insert 𝑟 according to the guide object. As mentioned
before, the concept of guided insertion is that similar requests
should be able to be inserted in the same manner. Given a target
request 𝑟 and the set 𝐺𝑂𝑟 , we try to insert 𝑟 under the guidance of
elements in 𝐺𝑂𝑟 .

Given (𝛾, 𝑃𝑜 , 𝑃𝑑 ) ∈ 𝐺𝑂𝑟 , we use 𝑃𝑜 to guide the insertion of 𝑂𝑟 ,
and 𝑃𝑑 to guide the insertion of 𝐷𝑟 .

If 𝛾 has not been related to any real route inΘ, then we activate a
new vehicle 𝑣 to service 𝑟 . Its route 𝜃 𝑣 is initialized as two key points

𝐾1, the initial depot, and 𝐾2, the final depot. Next, two key points
𝐾 (𝑂𝑟 ) and 𝐾 (𝐷𝑟 ) supporting the pickup and drop-off services are
inserted between 𝐾1 and 𝐾2. Then we relate 𝜃 𝑣 to 𝛾 by correctly
setting the pointers 𝑙𝑐𝑃 and 𝑟𝑐𝑃 for all 𝑃 ∈ 𝛾 (see Figure 2).

Figure 2: Illustration of the creation of the new route via GIM

If 𝛾 is already related to a real route 𝜃 ∈ Θ, then we utilize 𝑃𝑜
to construct a list of candidate insertion positions for the pickup
service. Specifically, in case 𝑟𝑐𝑃𝑜 is a null pointer (which means that
𝑃 has no related child yet), the candidate list only contains the key
point pointed by 𝑙𝑐𝑃𝑜 ; otherwise, the list contains all the key points
between the two key points pointed by 𝑙𝑐𝑃𝑜 and 𝑟𝑐𝑃𝑜 . We obtain a
candidate list for the drop-off services in the same way. Then, we
proceed with a best-fit scheme while trying the insertion feasibility
of 𝑟 at the selected candidate key points for the pickup and drop-off
services. This means that if at least one feasible insertion is found,
we keep the candidates that minimize the insertion cost.

Finally, every time 𝑟 is inserted in 𝜃 at𝐾 (𝑂𝑟 ) and𝐾 (𝐷𝑟 ) via GIM
with the guide object (𝛾, 𝑃𝑜 , 𝑃𝑑 ), we need to update the pointers
𝑙𝑐𝑃 and 𝑟𝑐𝑃 of pattern points 𝑃 along 𝛾 .

We note that the goal of GIM when inserting 𝑟 is to replicate
the insertion mode of the most similar reference request. We know
that the further forward positioned the guide object𝐺𝑂𝑟 , the more
similar the corresponding reference request is to 𝑟 . Therefore, we
implement a first-fit scheme to explore 𝐺𝑂𝑟 . If 𝑟 can be inserted
under the guidance of (𝛾, 𝑃𝑜 , 𝑃𝑑 ), we proceed with the insertion,
stop the exploration of𝐺𝑂𝑟 , and continue to insert the next request.
Otherwise, we explore the next guide object in 𝐺𝑂𝑟 .

7 NUMERICAL EXPERIMENTS
We programmed the algorithms in C++ language and solved the
problem on a 512 GB RAM machine with an AMD EPYC 7452
32-Core Processor.

7.1 Input Data
We take the transit network of the city of Clermont-Ferrand, France,
and its peri-areas. The underlined area contains 13, 839 nodes and
31, 357 arcs. Among all nodes, 1, 469 are selected to be valid pickup
and drop-off locations.

The system we study in this paper is still prospective, so there
are no available real-life request instances. The instances tested in
this paper are self-generated and simulate the intended use cases of
the system: providing services to all kinds of travel requests, which
are in addition dominated by daily commute demands.

The service period lasts 𝑇 = 24 hours, from 00 : 00 to 24 : 00.
We divide the entire period into five time slots: MS (Morning Slack,
00:00 ∼ 06:00), MP (Morning Peak, 06:00 ∼ 10:00), NH (Normal
Hours, 10:00 ∼ 15:00), EP (Evening Peak, 15:00 ∼ 19:00) and ES
(Evening Slack, 19:00 ∼ 24:00). We assume requests to be processed

Session 2C: Sustainable Mobility and Transportation

INOC 2024 60 Dublin,11–13 March 2024



A Guided Insertion Mechanism for Solving the Dynamic Large-Scale Dial-a-Ride Problem INOC 2024, March 11 - 13, 2024, Dublin, Ireland

in one day generally obey the following basic distribution: During
MP, arond 50% are typical that travel from a residential location
to a working location. Reversely, EP requests follow a symmetric
pattern, with half of the requests being typical that move from a
working position to a residential position. For the requests of MS,
NH and ES, their origin and destination are randomly distributed
over the network.

To guarantee the representative property of the reference request
set R̄ used in GIM, we randomly construct it according to the above-
introduced basic distribution.

Real requests should globally obey the basic distribution and be
“similar” from one day to another while exhibiting some random
variations. To simulate such a phenomenon, real request instances
are decomposed into two parts: the “random” part and the “similar”
part. Requests in the “random" part are randomly generated using
the above-defined basic distribution. The “similar” part simulates
the stable and recurring pattern of daily requests. We rely on R̄ to
generate the corresponding requests. Typically, when generating
a request 𝑟 in this part, we randomly select a reference 𝑟 . Then 𝑜𝑟
(resp. 𝑑𝑟 ) is randomly selected among the nodes that are reachable
within 3 arcs from 𝑜𝑟 (resp. 𝑑𝑟 ). And the earliest pickup time 𝑒𝑂𝑟 is
a random value selected between 𝑒𝑂𝑟 − 7.5 minutes and 𝑒𝑂𝑟 + 7.5
minutes. In terms of the daily recurring pattern, we consider two
scenarios: (high): “similar” part accounts for 90% of the requests;
and (moderate): “similar” part accounts for 50% of the requests.

Five instances of 300, 000 requests are generated and final results
are averaged. The time length of the pickup window is set at 15
minutes for all requests. The maximum ride time 𝑇 𝑟 is twice the
shortest travel time from 𝑜𝑟 to 𝑑𝑟 . The load for each request is 1.
And as real requests are supposed to be dynamic, we randomly
set the submission time 𝑡𝑟

𝑠𝑢𝑏
of 𝑟 between 0 and 𝑒𝑂𝑟 . Requests

are submitted on average one hour before 𝑒𝑂𝑟 . And in line with
the no-rejection assumption, values of 𝑡𝑟

𝑠𝑢𝑏
also satisfy that when

processing 𝑟 at epoch 𝐸, we can always activate a vehicle 𝑣 currently
parking at the depot to serve 𝑟 .

7.2 Analyses of the Effectiveness of GIM
In this work, the static reference problem LSDARP(R̄) is solved
by a best-fit insertion heuristic. The resulting solution Θ̄ contains
routes of 1, 621 vehicles. It is worth noting that there are other
approximation algorithms (Large Neighborhood Search, Adaptive
Large Neighborhood Search, etc.) capable of offering more opti-
mal solutions, but at the expense of significantly increasing the
processing time.

The length of each decision epoch 𝑒 lasts 𝐼𝑒 = 10 minutes, and for
the reason of comparing the efficiency of different approaches, the
maximum decision duration 𝜏 is not explicitly fixed, and we count
the CPU time spent required for each decision epoch. The GIM
parameters 𝛿𝐾 (key point cluster threshold), 𝛿𝑠 and 𝛿𝑡 (request
similarity thresholds) are fixed at 2 minutes, 2 minutes, and 15
minutes, respectively.

In order to test the performance of the GIM , we consider three
sets of baseline algorithms: BF (Best-Fit insertion heuristic), PFS
(Partial Filtering System), and FS (Filtering System). PFS and FS
are two approaches proposed in [14], in which a best-fit insertion
heuristic is implemented over the candidate vehicles and insertion

positions selected by a filtering system. Specifically, given a request
𝑟 , inPFS, the search space contains all the filtered candidate vehicles
and insertion positions; while in FS, the search space is further
reduced to a subset of selected candidate vehicles along with their
candidate insertion positions. The FS implemented in this study
involves keeping the top 10% best vehicles from the candidate pool.
The number of selected vehicles is also bounded between 40 and
140. Then, we can integrate the GIM on the upstream side of these
three baseline algorithms. Accordingly, we propose three methods:
GIM-BF, GIM-PFS and GIM-FS.

Table 1 shows the results of the final fleet size, the total drive
time of vehicles, and passengers’ average in-vehicle time. The varia-
tions represented in percentage are calculated based on the baseline
approach BF. First, in terms of fleet size, we see that in both sce-
narios, all the approaches integrated with GIM outperform their
corresponding baseline approaches. In addition, GIM-BF and GIM-
PFS further reduce the fleet size established by BF by almost 6%,
because they are guided by statically obtained travel patterns. Fur-
thermore, thanks to the reduction in the number of used vehicles
and the fact that GIM helps better organize the routes by following
the pre-defined travel patterns, the total drive times of vehicles are
also improved. Meanwhile, passenger travel comfort remains the
same because better organized routes decrease detours and increase
the ride-sharing. All evidence indicates that, by learning from the
well-resolved reference solution, GIM has the potential to promote
vehicle utilization and alleviate emissions. Finally, we also notice
that GIM is not sensible to similarity scenarios high and moderate.
A possible reason is that, due to the large-scale aspect, we have a
great chance of finding a similar reference request, even though it
was not deliberately generated as such.

Let us now focus on the scenario high to analyze the CPU times
spent to process the requests during each decision epoch (see Fig-
ure3). First of all, we observe two peaks in the processing time for
almost all approaches, corresponding to the high ratio of request
submissions during the two peak periods MP and EP. During most
of the epochs corresponding to the time slots MS, MP, NH and ES,
all approaches using GIM outperforms their baseline methods. This
advantage is especially pronounced during peak hours. During the
first few epochs (corresponding to MS), methods with GIM tend to
be less efficient. This is because GIM activates numerous vehicles
at the beginning of the process, resulting in a larger search space
compared to other baseline approaches.

Figure 3: The execution time during each decision epoch

Generally speaking, compared to their baseline approaches, meth-
ods integrated with GIM showcase the advantages of reducing the
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Table 1: Results with different approaches under different similarity scenarios with 300k requests

scenario approach fleet size total drive time average in-vehicle time
(h) (min)

high

BF 2,183 25,717.5 16.9
PFS 2,183 (-0.0%) -0.0% 16.9
FS 2,583 (+18.3%) +22.7% 16.7

GIM-BF 2,061 (-5.6%) -4.9% 16.9
GIM-PFS 2,053 (-6.0%) -4.9% 16.9
GIM-FS 2,326 (+6.6%) +15.8% 16.7

moderate

BF 2,191 25,641.0 17.0
PFS 2,176 (-0.7%) +0.1% 17.0
FS 2,548 (+16.3%) +23.0% 16.8

GIM-BF 2,063 (-5.8%) -4.7% 17.0
GIM-PFS 2,066 (-5.7%) -4.7% 17.0
GIM-FS 2,347 (+7.1%) +16.8% 16.8

execution times during peak hours while providing better routing
solutions in terms of the fleet size, total drive time and passenger
comfort. This highlights the potential of the utilization of GIM in
solving the dynamic LSDARP.

8 CONCLUSION
We introduce a GIM upstream of the classic best-fit insertion heuris-
tic. The experiment results show that by learning and imitating
a reference static solution, GIM stands out in dynamic scenarios
by encouraging the fleet to follow optimal vehicle travel patterns.
Moreover, its integration with state-of-the-art accelerating algo-
rithms such as the filtering system substantially reduces processing
time without compromising solution quality. We believe that, with
a more representative reference problem and a more optimal refer-
ence solution, GIM should emerge as a highly effective algorithm,
well-suited for addressing dynamic online problems. GIM is cur-
rently in its early stages as an emerging technology. Our upcoming
focus aims to enhance its performance by maximizing the propor-
tion of successful guided insertions within each epoch.
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ABSTRACT
Ensemble learning combines multiple classifiers in the hope of
obtaining better predictive performance. Empirical studies have
shown that ensemble pruning, that is, choosing an appropriate
subset of the available classifiers, can lead to comparable or better
predictions than using all classifiers. In this paper, we consider a
binary classification problem and propose an integer programming
(IP) approach for selecting optimal classifier subsets. We propose
a flexible objective function to adapt to different datasets as well
as constraints to ensure minimum diversity levels in the ensemble.
We are able to quickly obtain good solutions for datasets with up to
60,000 data points. Our approach yields competitive results when
compared to some of the most used pruning methods in literature.

1 INTRODUCTION
Ensemble learning is a popular technique in the domain of machine
learning. An ensemble is defined as the aggregation of multiple
classifications into a single final decision. It is generally accepted in
literature that the precision of an ensemble tends to improve when
compared to the behaviour of individual classifiers [27].

Well-known approaches for efficiently generating ensembles
include Bagging (bootstrap aggregating) [3] and Boosting [13], in
which all classifiers are considered in the aggregation. There are,
however, theoretical and empirical studies which have shown that
pruning an ensemble by selecting a subset of the classifiers can lead
to comparable or better predictions [19, 27].

In this work we tackle the ensemble pruning problem by in-
troducing an integer programming (IP) approach for choosing an
optimal subset of binary classifiers. Our formulation optimises a
weighted function of the patterns in the binary confusion matrix.
This flexible approach allows us to customise the objective function
according to the properties of the underlying dataset. As our objec-
tive is based on performance we also introduce linear constraints
that ensure minimum diversity levels in the ensemble.

Despite the existence of consolidated techniques for ensemble
pruning, we believe that our approach contributes to the current
knowledge in the field due to the flexibility of the IP paradigm,
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†
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International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
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adaptable to particularities of different problems. One of its advan-
tages is being able to combine performance and diversity criteria.
Furthermore, our method is exact, while most algorithms in litera-
ture are suboptimal.

In this paper we show that with current solver technology we
can find good solutions to relatively large problems in reasonable
computational times. We compare our formulation to a full en-
semble and six other well-known methods in literature. We report
competitive results for publicly available datasets ranging from 195
to 60,000 data points.

The remainder of this paper is organised as follows. In Section 2
we give a brief overview of existing methods in ensemble learning.
In Section 3 we present our optimisation approach and in Section
4 we amend it to enforce minimum diversity levels. Our compu-
tational experiments are shown in Section 5 and in Section 6 we
present our concluding remarks.

2 LITERATURE REVIEW
The first step in an ensemble process is to generate a set of distinct
classifiers that is precise and diverse. Highly correlated classifiers
may hinder the potential benefit of using an ensemble. Several
techniques for ensuring diversity in classifiers have been proposed
[8, 10], such as randomisation, distinct tuning of hyperparameters
and different classifiers. Other diversification techniques include
training classifiers with different distributions of the training set
and with distinct subsets of features.

The next step is selecting an appropriate classifier subset. This
selection can be dynamic [8], where different subsets are chosen for
different data points, or static, where a single subset is chosen. Static
selection policies are based on ranking, clusters and optimisation.

Ranking methods sort classifiers according to a fitness function.
In general they greedily increase the subset size. In Kappa pruning
[20], every pair of classifiers is sorted according to a statistical
measure of agreement. Reordering techniques [22] are used to
build sub-ensembles of increasing size. In [26] classifiers are ranked
according to a significance index.

Cluster methods first apply a clustering algorithm to separate
classifiers according to some similarity measure and then prune
each cluster separately to increase general diversity. Known clus-
tering algorithms include 𝑘-means [17], where similarity is based
on Euclidean distance, and hierarchical agglomerative clustering
[15], which employs probabilities.

Several optimisation methods for ensemble pruning have also
been proposed, with most offering approximate solutions. The most
popularmethod is hill climbing, which has been appliedwith several
different fitness functions. Some are based on performance [11] (e.g.
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accuracy), others on diversity [20, 24]. Three examples of diversity-
based fitness functions are Complementariness [21], Concurrency
[1] and UncertaintyWeighted Accuracy [25]. In [23], reinforcement
learning was employed for a greedy method based on diversity. In
[27] a semi-definite programming approach was proposed which
considers trade-offs between accuracy and diversity.

The last step in the procedure is combining classifiers into a
single prediction, which is usually done through majority voting.
For further details we refer the reader to [16].

3 FORMULATION
Consider a binary classification problem where data points belong
to classes 1 (positive) or 0 (negative). Let K = {1, . . . , 𝐾} be the set
of classifiers. LetN0 = {1, . . . , 𝑁0} andN1 = {1, . . . , 𝑁1} be the sets
of negative and positive data points respectively, with 𝑁 = 𝑁0 +𝑁1
being the total number of data points. Consider a 𝑁1 × 𝐾 matrix
𝐵 where 𝛽𝑖𝑘 = 1 if classifier 𝑘 ∈ K correctly classified data point
𝑖 ∈ N1 as positive, 𝛽𝑖𝑘 = 0 if it mistakenly classified 𝑖 as negative.
Accordingly consider a 𝑁0 × 𝐾 matrix 𝐴 where 𝛼 𝑗𝑘 = 0 if classifier
𝑘 ∈ K correctly classified data point 𝑗 ∈ N0 as negative, 𝛼 𝑗𝑘 = 1 if
𝑗 was mistakenly classified as positive.

Suppose S ⊆ K is a set of 𝑆 classifiers selected to compose a
given pruned ensemble. For any data point 𝑖 ∈ N1,

∑
𝑠∈S 𝛽𝑖𝑠 is the

number of correct positive classifications withinS. Accordingly, for
any data point 𝑗 ∈ N0,

∑
𝑠∈S 𝛼 𝑗𝑠 represents the number of (wrong)

positive classifications within S.
We define a threshold 0 ≤ 𝐿 ≤ 𝑆 such that for a given data

point 𝑖 ∈ N1,
∑
𝑠∈S 𝛽𝑖𝑠 > 𝐿 implies that the ensemble classifies 𝑖

as positive. If
∑
𝑠∈S 𝛽𝑖𝑠 ≤ 𝐿, then 𝑖 is classified by the ensemble

as negative. Similarly for 𝑗 ∈ N0,
∑
𝑠∈S 𝛼 𝑗𝑠 > 𝐿 implies a posi-

tive ensemble classification and
∑
𝑠∈S 𝛼 𝑗𝑠 ≤ 𝐿 implies a negative

ensemble classification. For instance, if 𝑆 = 10 and 𝐿 = 5, then
the ensemble classifies a data point as positive if at least 6 indi-
vidual classifications are positive. If 5 or less are positive, then the
ensemble classifies that data point as negative.

In our formulation we let the optimisation define both S and
𝐿. Hence we include 𝐿 as a general integer variable representing
the classification threshold and binary variables 𝑥𝑘 = 1 if classifier
𝑘 ∈ K is chosen to compose the ensemble (𝑥𝑘 = 0 otherwise).

Table 1: Binary classification confusion matrix

Predicted
1 0

Ac
tu
al 1 𝑇 + 𝐹 −

0 𝐹 + 𝑇 −

Consider the binary confusion matrix shown in Table 1, where
𝑇 +, 𝐹−,𝑇 − and 𝐹+ are the total number of classifications of each pos-
sible pattern. For each patternswe assignweights𝑊 +𝑇 ,𝑊

−
𝑇 ,𝑊

+
𝐹 ,𝑊

−
𝐹 ∈

R, and the objective function is defined by theweighted sum𝑊 +𝑇 𝑇
++

𝑊 −𝐹 𝐹
− +𝑊 −𝑇 𝑇 − +𝑊 +𝐹 𝐹+.

For modelling this function we define binary variables 𝑡+𝑖 , 𝑓
−
𝑖 if

the ensemble classification of 𝑖 ∈ N1 is respectively a true positive
or false negative. Similarly we define binary variables 𝑡−𝑗 , 𝑓

+
𝑗 if the

ensemble classification of 𝑗 ∈ N0 is a true negative or false positive.

The IP formulation is given by:

max
𝑁1∑︁
𝑖=1
(𝑊 +𝑇 𝑡+𝑖 +𝑊 −𝐹 𝑓 −𝑖 ) +

𝑁0∑︁
𝑗=1
(𝑊 −𝑇 𝑡−𝑗 +𝑊 +𝐹 𝑓 +𝑗 ) (1)

subject to

(𝐿 + 1) −
𝐾∑︁
𝑘=1

𝑥𝑘 𝛽𝑖𝑘 ≤ (𝐾 + 1) (1 − 𝑡+𝑖 ), ∀𝑖 ∈ N1 (2)

𝐾∑︁
𝑘=1

𝑥𝑘 𝛽𝑖𝑘 − 𝐿 ≤ (𝐾 + 1)𝑡+𝑖 , ∀𝑖 ∈ N1 (3)

𝑡+𝑖 + 𝑓 −𝑖 = 1, ∀𝑖 ∈ N1 (4)
𝐾∑︁
𝑘=1

𝑥𝑘 𝛼 𝑗𝑘 − 𝐿 ≤ 𝐾 (1 − 𝑡−𝑗 ), ∀𝑗 ∈ N0 (5)

(𝐿 + 1) −
𝐾∑︁
𝑘=1

𝑥𝑘 𝛼 𝑗𝑘 ≤ 𝐾𝑡−𝑗 , ∀𝑗 ∈ N0 (6)

𝑓 +𝑗 + 𝑡−𝑗 = 1, ∀𝑗 ∈ N0 (7)
𝑥𝑘 ∈ B ∀𝑘 ∈ K (8)

𝑡+𝑖 , 𝑓
−
𝑖 ∈ B ∀𝑖 ∈ N1 (9)

𝑡−𝑗 , 𝑓
+
𝑗 ∈ B ∀𝑗 ∈ N0 (10)

0 ≤ 𝐿 ≤ 𝐾, (11)
𝐿 ∈ Z (12)

Constraints (2) ensure that a positive data point 𝑖 ∈ N1 has
𝑡+𝑖 = 1 if the number of individual positive classifications exceeds
𝐿. Conversely, constraints (3) ensure that 𝑡+𝑖 = 0 if the number of
individual positive classifications is no more than 𝐿. Constraints
(4) ensure that either 𝑡+𝑖 = 1 or 𝑓 −𝑖 = 1. Constraints (5) guarantee
that a negative data point 𝑗 ∈ N0 has 𝑡−𝑗 = 0 if the number of
positive classifications exceeds 𝐿. Otherwise, constraints (6) make
sure that 𝑡−𝑗 = 1. Constraints (7) ensure that either 𝑓 +𝑗 = 1 or 𝑡−𝑗 = 1.
Constraints (8)-(12) define variables bounds.

3.1 Objective function
For some classification problems, it may be desirable to optimise
some patterns instead of others. For instance, in an investment de-
cision, investing in the wrong project may cause bankruptcy while
not investing in a promising project may be seen as a regretful
but acceptable lost opportunity. In this case prioritising the min-
imisation of 𝐹+ is desirable. The weights in Equation (1) provide
flexibility for defining optimisation criteria depending on the char-
acteristics of the dataset at hand (such as being highly imbalanced).
A few examples are outlined below.

Accuracy is defined as 𝑇 ++𝑇 −𝑁 . As 𝑁 is constant we can maximise
accuracy by defining weights𝑊 +𝑇 =𝑊 −𝑇 = 1 and𝑊 +𝐹 =𝑊 −𝐹 = 0.
Notice that if we choose this objective then constraints (3) and (6)
are redundant as maximising positive weights𝑊 +𝑇 and𝑊 −𝑇 ensure
that 𝑡+𝑖 = 1 and 𝑡−𝑖 = 1 if allowed by constraints (2) and (5). Similarly,
Recall is defined as 𝑇 +

𝑇 ++𝐹 − = 𝑇 +
𝑁1

and can be maximised by setting
𝑊 +𝑇 = 1 and𝑊 −𝑇 = 𝑊 +𝐹 = 𝑊 −𝐹 = 0 (with constraints (3) being
redundant).
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Accuracymay not be the most appropriate metric for the selected
datasets since several are imbalanced. Let 𝜃 = 𝑁1

𝑁 be the dataset
imbalance level. If, for instance, 𝜃 ≥ 1−𝜖 for small 𝜖 , a high accuracy
can be achieved by simply classifying every data point as positive.
For imbalanced datasets a possibly useful configuration is setting
weights𝑊 +𝑇 = (1− 𝜃 ),𝑊 −𝑇 = 𝜃 and𝑊 +𝐹 =𝑊 −𝐹 = 0. We refer to this
function as 𝜃 -weighted).

Balanced Accuracy (BA) is an alternative metric which weighs
equally the accuracy of positive data points and the accuracy of neg-
ative data points. BA is a more appropriate measure for imbalanced
datasets [4] and is given by:

BA =
𝑇 +

𝑇 ++𝐹 − + 𝑇 −
𝑇 −+𝐹+

2 =
𝑇 +
𝑁1
+ 𝑇 −𝑁0
2 (13)

Theorem 1 shows that maximising BA is equivalent to maximis-
ing the 𝜃 -weighted function.

Theorem 1. Maximising the 𝜃 -weighted configuration is equiva-
lent to maximising balanced accuracy.

Proof. Following the definition of the 𝜃 -weighted function in
Section 3.1, objective function 𝑧 can be written as:

max𝑧 =

(
1 − 𝑁1

𝑁

)
𝑇 + + 𝑁1

𝑁
𝑇 −

where 𝑇 + =
∑𝑁1
𝑖=1 𝑡

+
𝑖 , 𝑇

− =
∑𝑁0
𝑗=1 𝑡

−
𝑗 and 𝜃 = 𝑁1

𝑁 . As 𝑁 = 𝑁0 + 𝑁1 it
follows that:

max 𝑧 =
𝑁0
𝑁
𝑇 + + 𝑁1

𝑁
𝑇 −

max𝑁𝑧 = 𝑁0𝑇
+ + 𝑁1𝑇

−

max 𝑐𝑧 =
𝑇 +

𝑁1
+ 𝑇

−

𝑁0

where 𝑐 = 𝑁
𝑁1𝑁0

> 0 is a scaling factor, and thus maximising the
𝜃 -weighted function is equivalent to maximising balanced accuracy.

□

4 DIVERSITY
Asmentioned before many ensemble pruning algorithms employ di-
versity criteria. Our proposed formulation optimises a performance
measure, and in this section we introduce a way to control diver-
sity with linear constraints. We consider a diversity measure called
Pairwise Failure Crediting (PFC), proposed originally by [5], cho-
sen due to well-known good performance in imbalanced datasets
[2, 12]. PFC measures how diverse an individual classifier is from
the remaining classifiers in the ensemble.

PFC is calculated as follows. For each classifier 𝑘 , we compute a
failure pattern (FP). A FP is a string of 0’s and 1’s with length𝑁 . A ‘0’
in the string means that the classifier failed to correctly predict the
corresponding data point and a ‘1’ means that it predicted the data
point correctly (irrespective of its real value). Once we have all fail-
ure patterns we take any two classifiers 𝑘 and 𝑙 and calculate their
Hamming distance. The Hamming distance between same-length
strings is the number of different characters in the same positions.
For example, if FP𝑘 = {0011011101} and FP𝑙 = {0110001110}, the
Hamming distance between 𝑘 and 𝑙 is 5 (characters 2, 4, 6, 9 and 10
differ). Next, we sum all failures by both classifiers - that is, we sum
the number of zeros in both strings which, in the example, is 9. The

failure credit (FC) between 𝑘 and 𝑙 is obtained by dividing the Ham-
ming distance by the sum of failures. In the example, FC𝑘𝑙 = 5/9.
For every pair 𝑘, 𝑙 ∈ K we compute FC𝑘𝑙 .

Consider againS as a set of 𝑆 ≤ 𝐾 classifiers selected to compose
an ensemble. We assume without loss of generality that classifiers
in S are indexed by 𝑘 = 1, . . . , 𝑆 . PFC is defined as:

PFC𝑘 =

∑𝑆
𝑙=1,𝑙≠𝑘 FC𝑘𝑙
𝑆 − 1 𝑘 ∈ S

A (maximum) value of 1 in PFC𝑘 means that 𝑘 classifies all data
points differently from every other classifier in the ensemble, and a
(minimum) value of 0 means that 𝑘 is identical to all other classifiers.
Both extreme cases imply that all other classifiers are identical
among themselves.

For ensuring minimum desired diversity levels, we propose two
approaches: (i) the minimum PFC of any individual classifier is at
least a certain threshold 0 ≤ 𝜏 ≤ 1 in order to prevent very similar
pairs of classifiers and (ii) the average PFC of the ensemble must
be at least a certain threshold 0 ≤ 𝛾 ≤ 1 to ensure an overall good
level of diversity. Clearly we must have 𝛾 ≥ 𝜏 .

We add the following new decision variables. Let 𝑦𝑘𝑙 = 1 if both
classifiers 𝑘 and 𝑙 have been selected to be part of the ensemble,
and 𝑦𝑘𝑙 = 0 if at most one of 𝑘 and 𝑙 is chosen to compose the
ensemble. This adds

(𝐾
2
)
extra variables (for every possible pair 𝑘, 𝑙 ).

For simplicity, both 𝑦𝑘𝑙 and 𝑦𝑙𝑘 denote the exact same variable. The
following constraints ensure that 𝑦𝑘𝑙 takes the correct values:

𝑦𝑘𝑙 ≥ 𝑥𝑘 + 𝑥𝑙 − 1 ∀𝑘, 𝑙 ∈ K, 𝑘 < 𝑙 (14)
𝑦𝑘𝑙 ≤ 𝑥𝑘 ∀𝑘, 𝑙 ∈ K, 𝑘 < 𝑙 (15)
𝑦𝑘𝑙 ≤ 𝑥𝑙 ∀𝑘, 𝑙 ∈ K, 𝑘 < 𝑙 (16)
𝑦𝑘𝑙 ≥ 0 ∀𝑘, 𝑙 ∈ K, 𝑘 < 𝑙 (17)

Notice that there is no need for the 𝑦𝑘𝑙 variables to be binary. Both
𝑥𝑘 and 𝑥𝑙 being binary ensure 𝑦𝑘𝑙 to be 0-1 in any integer solution.

We then rewrite the PFC equation using variables 𝑥𝑘 and 𝑦𝑘𝑙 :

PFC𝑘 =

∑𝐾
𝑙=1,𝑙≠𝑘 FC𝑘𝑙 𝑦𝑘𝑙∑𝐾
𝑚=1 𝑥𝑚 − 1

∀𝑘 ∈ K

The term
∑𝐾
𝑚=1 𝑥𝑚 is the cardinality of the ensemble and any non-

selected classifier 𝑘 (with 𝑥𝑘 = 0) has a PFC equal to zero (as all
𝑦𝑘𝑙 = 0, 𝑙 ≠ 𝑘).

The following linear constraints enforce that every classifier has
a minimum PFC of 𝜏 :

𝐾∑︁
𝑙=1
𝑙≠𝑘

FC𝑘𝑙 𝑦𝑘𝑙 ≥ 𝜏
( 𝐾∑︁
𝑚=1

𝑥𝑚 − 1
)
− 𝐾𝜏 (1 − 𝑥𝑘 ) ∀𝑘 ∈ K (18)

The term 𝐾𝜏 (1 − 𝑥𝑘 ) ensures that the constraints above are only
enforced if classifier 𝑘 is chosen to compose the ensemble.

The following nonlinear constraint ensures that the average PFC
of the ensemble is at least 𝛾 :

1∑𝐾
𝑚=1 𝑥𝑚

∑𝐾
𝑘=1

∑𝐾
𝑙=1,𝑙≠𝑘 FC𝑘𝑙 𝑦𝑘𝑙∑𝐾
𝑚=1 𝑥𝑚 − 1

≥ 𝛾 (19)

Observe that in Equation (19) the FCs of every pair are added twice.
We use this fact to linearise this expression. For a given subset S,

Session 3A: Combinatorial Optimization

INOC 2024 66 Dublin,11–13 March 2024



INOC 2024, March 11 - 13, 2024, Dublin, Ireland

the average PFC 𝜇PFC is given by:

𝜇PFC =
1
𝑆

𝑆∑︁
𝑘=1

∑𝑆
𝑙=1,𝑙≠𝑘 FC𝑘𝑙
𝑆 − 1

=
1

𝑆 (𝑆 − 1)
𝑆∑︁
𝑘=1

𝑆∑︁
𝑙=1
𝑙≠𝑘

FC𝑘𝑙

=
2

𝑆 (𝑆 − 1)
𝑆−1∑︁
𝑘=1

𝑆∑︁
𝑙=𝑘+1

FC𝑘𝑙

=
1(𝑆
2
) 𝑆−1∑︁
𝑘=1

𝑆∑︁
𝑙=𝑘+1

FC𝑘𝑙 = 𝜇FC

where 𝜇FC denotes the average FC of all pairs in the ensemble. We
have that the average PFC among all classifiers in the ensemble is
equal to the average FC among all pairs.

If 𝑆 classifiers are selected in the ensemble, then the number
of 𝑦𝑘𝑙 variables that take value 1 is exactly

(𝑆
2
)
. Therefore we can

ensure that the average PFC is at least 𝛾 with the following linear
constraint:

𝐾−1∑︁
𝑘=1

𝐾∑︁
𝑙=𝑘+1

FC𝑘𝑙 𝑦𝑘𝑙 ≥ 𝛾
𝐾−1∑︁
𝑘=1

𝐾∑︁
𝑙=𝑘+1

𝑦𝑘𝑙 (20)

The expanded formulation with minimum diversity levels is
given by maximising (1) subject to (2)-(18) and (20). It requires

(𝐾
2
)

extra variables and a similar number of extra constraints. Even so,
we observed empirically in Section 5.3 that the inclusion of such
constraints causes a negligible decrease in solution quality.

5 COMPUTATIONAL EXPERIMENTS
In this section we outline the computational experiments used to
evaluate the proposed formulation. We used 9 publicly available
datasets, outlined in Table 21, ranging from 𝑁 = 195 to 𝑁 = 60,000.
Imbalance parameter 𝜃 is shown in the table.

5.1 Description of the experiments
We prepared 10 different heterogeneous classifier models. Each
model was instantiated a number of times with different random
seeds and parameters.We set𝐾 asmultiples of 10 in order to have an
equal number of instantiations of each classifier. For instance, if𝐾 =
60, we have 6 classifiers of each model. In our experiments, reported
below, we used 𝐾 = {40, 60, 80, 100}. Each classifier produces, as
output, a probability of a data point being positive. This probability
is rounded to define matrices 𝐴 and 𝐵.

For evaluating performance we used a stratified 10-fold cross-
validation procedure. The 𝑁 data points are initially shuffled ran-
domly and the dataset is split into 10 folds. At each iteration, one
of the folds is left out as an independent set. The results presented
below are based solely on this set. The other 9 folds, comprising
90% of the original dataset, are joined and split into two sets: a train-
ing set, containing 63% of the data points, is used to optimise the
individual classifiers. A validation set, comprising the remaining
27% data points, is used to optimise the ensemble algorithms.

The procedure above is repeated 10 times: in each we vary the
random seeds required to both shuffle the dataset and initialise
the individual classifiers. For each value of 𝐾 and for each instance
1All datasets can be found at the UCI Machine Learning Repository [18]

shown in Table 2, we run 100 experiments: 10 random initialisations
× 10 folds. For ensuring reproducibility of our results, we have made
all necessary data publicly available. A link and a description of the
classifiers can be found in the supplementary material2.

Table 2: Selected datasets from the UCI Machine Learning
Repository [18]

Identifier Dataset Features 𝑁 𝑁0 𝑁1 𝜃
PRK Parkinsons 23 195 48 147 0.77
MSK Musk (Version 1) 168 476 269 207 0.44
BCW Breast Cancer Wisconsin 32 569 357 212 0.37
QSR QSAR biodegradation 41 1055 356 699 0.66
DRD Diabetic Retinopathy Debrecen 20 1151 540 611 0.53
SPA Spambase 57 4601 2788 1813 0.39
DEF Default of credit card clients 24 30000 23364 6636 0.22
BMK Bank Marketing 21 41188 36548 4640 0.11
APS APS Failure at Scania Trucks 171 60000 59000 1000 0.02

5.2 Benchmarks
We compare our formulation to seven other approaches: Full (non-
pruned) Ensemble (FE), Reduced-Error Pruning with Backfitting
[14] (hereby Backfitting or BFT), Kappa pruning [20] and four differ-
ent hill climbing based methods. Here we report here results for the
four approaches with the best overall out-of-sample performance.
The full results are available in the supplementary material accom-
panying this paper. All benchmarks classify data points based on
majority voting and are allowed to run for a maximum of 5 minutes.

Backfitting follows a greedy approach with revision. From an
empty subset 𝑆 , BFT iteratively adds to 𝑆 a classifier 𝑠 such that
the accuracy of 𝑆 ∪ 𝑠 is maximised. This process is repeated until
𝑀 classifiers are added to 𝑆 , with ties broken arbitrarily. When-
ever a classifier is added, the greedy choice is revised through a
local search procedure. Each classifier in the ensemble is iteratively
replaced by another previously left out. If the overall accuracy is
improved, the method starts again with the new subset 𝑆 . Kappa
pruning is similar, but does not revise the greedy choice and opti-
mises the 𝜅-statistic [6]. Both methods require𝑀 to be fixed. For a
fairer comparison, we varied𝑀 within 20% and 80% of 𝐾 . The best
in-sample results are used to evaluate the independent set.

The other benchmarks use the forward version of the hill climb-
ing search algorithm, differing in the selected fitness function. In
all four methods, the first iteration selects the individual classifier
with maximum accuracy. Then classifiers are greedily added so
as to maximise the selected fitness. This process is repeated until
all classifiers are added to 𝑆 . The chosen ensemble is the one with
best fitness over all the ensembles iteratively created. As opposed
to the other benchmarks, direct hill climbing does not define the
ensemble size a priori. The fitness functions chosen are the same as
tested by [25]: Accuracy, Complementariness [21], Concurrency [1]
(HC-CON) and Uncertainty Weighted Accuracy [25] (HC-UWA).

We compare our method to BFT, HC-CON, HC-UWA and FE.

5.3 Solving the formulation
Due to limited space, in this paper we refrain from evaluating our
proposed formulation with regards to the computational effort
2The supplementary material is available here.
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required to solve it. We leave that for future work. We however
observed in practice that, with a 5-minutes time limit, we were
able to either optimally solve or terminate the algorithm with small
optimality gaps for all instances.

The average gaps for the results reported in Section 5.4 for
𝐾 = 100 are summarised in Table 3. The “No diversity” column
corresponds to F1 in that section, and only constraints (2)-(12) are
used. The “With diversity” column corresponds to F3, which uses
constraints (2)-(18) and (20). The largest instance, APS, had average
gaps of only 0.1% in both cases. The hardest instance was DEF (6.7%
and 6.9%). The only case where a difference was notable was for
the DRD instance (4.3% and 6.1%).

In our view, even the hardest instances were still relatively close
to optimality considering the short computational time. We used
CPLEX 12.8 [7] with default parameters as the IP solver and we ran
all experiments in an Intel Core(TM) I7-7700 @ 3.60GHz with 32GB
of RAM, using 8 cores and having Linux as the operating system.

Table 3: Avg. optimality gaps and standard deviations (in %).

Instance 27% of 𝑁 No diversity With diversity
Avg. Std. Avg. Std.

PRK 26 0.0 0.0 0.0 0.0
BCW 129 0.0 0.0 0.0 0.0
MSK 154 0.0 0.0 0.0 0.0
QSR 285 0.0 0.0 0.0 0.1
DRD 311 4.3 2.0 6.1 1.8
SPA 1242 0.0 0.0 0.2 0.2
DEF 8100 6.7 0.4 6.9 0.4
BMK 11121 5.4 0.3 5.5 0.2
APS 16200 0.1 0.0 0.1 0.0

5.4 Accuracy
In the results reported in this section, we seek to maximise accuracy
regardless of 𝜃 , by setting𝑊 +𝑇 =𝑊 −𝑇 = 1 and𝑊 +𝐹 =𝑊 −𝐹 = 0. We
evaluate three different configurations.

In the first, F1, we employ only constraints (2)-(12), without
enforcing diversity. The other two configurations, F2 and F3, en-
force minimum diversity levels in the hope of preventing possible
overfitting. In F2 we only constrain the overall average PFC by
setting 𝜏 = 0 and 𝛾 =

PFCmin+PFCavg
2 , where PFCmin and PFCavg are

the minimum individual PFCs among all classifiers and the average
PFC of the full ensemble. In F3 we also set 𝜏 = PFCmin.

Table 4 summarises the results with an average rank per value
of 𝐾 across all datasets. We use the ranking procedure of [9]. The
full results are shown in the supplementary material.

Table 4: Average ranks of accuracies

𝐾 F1 F2 F3 BFT HC-CON HC-UWA FE
40 3.82 3.74 3.79 4.04 3.71 3.66 5.25
60 3.82 3.70 3.76 4.03 3.66 3.66 5.39
80 3.82 3.80 3.75 4.09 3.54 3.58 5.42
100 3.91 3.72 3.72 4.07 3.55 3.56 5.48
Avg: 3.84 3.74 3.75 4.06 3.61 3.61 5.38

The results suggest that while our proposed formulation is over-
all competitive, it was slightly outperformed by HC-CON and HC-
UWA - both in terms of average accuracy (from the table in the
supplementary material) and average rank. Still, with the exception
of FE, the difference between BFT (worst performing) and HC-CON
(best performing) was 0.33% in terms of average overall accuracy
and 0.45 in terms of average rank. Adding diversity constraints to
our formulation also had a small beneficial impact in improving
average accuracy and reducing the average ranking. In 11 out of
the 36 cases, F2 outperformed all benchmarks.

Both HC benchmarks had a higher dispersion of accuracies than
our methods. Also, adding diversity in F2 and F3 helped reduce
dispersion. Further studies on either better enforcing these con-
straints or proposing new constraints based on alternative diversity
measures remain as future work. Since our proposed method is ex-
act in nature (although limited to 5 minutes), in the supplementary
material we discuss in more detail the effects of overfitting.

5.5 Balanced accuracy
In this section, we evaluate the out-of-sample performance accord-
ing to Balanced Accuracy (BA). We employ F1 as defined earlier and
a modified F1 where we maximise the 𝜃 -weighted configuration
suggested in Section 3.1. Tables 5 and 6 show the results. In Table
5, we show results for only 𝐾 = {80, 100} and for the five largest
datasets, but the full results are available in the supplementary ma-
terial. A bold value in theAvg. columns means that our formulation
obtained a higher average than all benchmarks. The averages in
the last row are for all results, not only those displayed in the table.
We did not rerun the experiments for the accuracy version of F1
nor for the benchmarks, rather we used the same ensemble subsets
to calculate the corresponding balanced accuracies.

Here both configurations of our formulation outperformed the
benchmarks. F1 (𝜃 -weighted) consistently outperformed F1 and
all benchmarks, with better ranks, overall average accuracies and
lower dispersion, especially for the larger (and more imbalanced)
datasets. F1 (𝜃 -weighted) outperformed all benchmarks in 22 out of
36 cases. It hadworse performance than the benchmarks inMSK and
DRD, which are the most balanced datasets. These results suggest
that being able to configure the objective function according to the
characteristics of the dataset at hand can be highly beneficial.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this work we proposed an IP approach for the problem of select-
ing a subset of classifiers in ensemble learning, with the goal of
maximising a weighted function of the patterns in the confusionma-
trix. In order to combine performance and diversity criteria, we also
proposed linear constraints to enforce minimum diversity levels.
We observed that state-of-the-art solvers can find good solutions in
reasonable computational times for relatively large datasets. The IP
approach is, in our view, able to provide a flexible exact algorithm
which can also be used as a heuristic if short computational time
limits are required. This approach has the additional advantage of
providing bounds on optimal values.

We compared our formulation to seven well-known benchmarks.
We used a stratified 10-fold cross validation procedure and evalu-
ated the effect of enforcing minimum diversity levels and varying
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Table 5: Balanced Accuracy averages and standard deviations

Dataset 𝐾
F1 F1 (𝜃 -weighted) BFT HC-CON HC-UWA FE

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.
DRD 80 0.7457 0.0064 0.7468 0.0046 0.7503 0.0057 0.7525 0.0065 0.7525 0.0072 0.7126 0.0077

100 0.7404 0.0088 0.7466 0.0093 0.7479 0.0063 0.7506 0.0075 0.7551 0.0057 0.7148 0.0075
SPA 80 0.9504 0.0021 0.9521 0.0018 0.9488 0.0017 0.9512 0.0017 0.9493 0.0020 0.9403 0.0009

100 0.9500 0.0022 0.9517 0.0025 0.9485 0.0020 0.9515 0.0015 0.9493 0.0018 0.9402 0.0008
DEF 80 0.6662 0.0014 0.6985 0.0016 0.6484 0.0020 0.6553 0.0009 0.6557 0.0011 0.6484 0.0011

100 0.6661 0.0019 0.6992 0.0014 0.6482 0.0018 0.6542 0.0020 0.6560 0.0007 0.6473 0.0012
BMK 80 0.7765 0.0055 0.8684 0.0015 0.7322 0.0046 0.7477 0.0028 0.7469 0.0018 0.6822 0.0036

100 0.7794 0.0053 0.8694 0.0012 0.7363 0.0040 0.7478 0.0029 0.7479 0.0018 0.6762 0.0031
APS 80 0.8731 0.0039 0.9395 0.0038 0.8398 0.0045 0.8535 0.0033 0.8500 0.0040 0.8021 0.0037

100 0.8735 0.0053 0.9416 0.0041 0.8447 0.0064 0.8562 0.0040 0.8513 0.0032 0.8006 0.0032
Average: 0.8433 0.0080 0.8665 0.0063 0.8313 0.0069 0.8397 0.0075 0.8383 0.0076 0.8111 0.0057

Table 6: Average ranks of balanced accuracies

𝐾 F1 F1 BFT HC-CON HC-UWA FE
(𝜃 -weighted)

40 2.98 2.37 3.94 3.33 3.43 4.95
60 2.88 2.45 3.97 3.29 3.40 5.02
80 2.92 2.39 3.97 3.25 3.38 5.09
100 2.97 2.41 4.00 3.20 3.36 5.06
Avg: 2.94 2.40 3.97 3.27 3.39 5.03

the weights assignments of the objective function. The results sug-
gest that our approach is competitive and its flexibility can be
beneficial when dealing with different datasets. All data required to
reproduce our results is made available as supplementary material.

As future work we intend to experiment with different criteria
and larger datasets. We also plan to study alternative diversity
constraints and to research IP techniques/matheuristics for both
finding good solutions quickly and solving the formulation faster.
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ABSTRACT
We consider the Steiner tree problem on graphs where we are given
a set of nodes and the goal is to find a tree sub-graph of minimum
weight that contains all nodes in the given set, potentially including
additional nodes. This is a classical NP-hard combinatorial optimisa-
tion problem. In recent years, a machine learning framework called
learning-to-prune (L2P) has been successfully used for solving a
diverse range of combinatorial optimisation problems. In this paper,
we use this learning framework on the Steiner tree problem and
show that even on this problem, the learning-to-prune framework
results in computing near-optimal solutions on a large majority of
the instances at a fraction of the time required by commercial ILP
solvers. Furthermore, we show that on instances from the Stein-
Lib and PACE Challenge datasets where the L2P framework does
not find the optimal solution, the optimal solution can often be
discovered by either using a lightweight local search algorithm to
improve the L2P solution or using L2P solution as a warm start
in an ILP solver. Our heuristic for Steiner tree problem leverages
historical solutions of known solutions for past instances from the
same distribution. Our results underscore the potential of the L2P
framework in solving various combinatorial optimisation problems.

KEYWORDS
MinimumSteiner Tree, Combinatorial Optimisation,Machine Learn-
ing, Learning to Prune

1 INTRODUCTION
Steiner tree problem is a classical well-studied combinatorial op-
timisation problem. It is applied to various problems in research
and industry [12] including various network design problems (see
e.g., [9]).We consider the variant of this problem on graphs, where
we are given an input weighted graph, a set of terminal nodes 𝑉
and the goal is to compute a minimal connected subgraph that
contains all nodes in 𝑉 . This variant of the problem is NP-hard.
Furthermore, it is even NP-hard to approximate it within a factor of
96/95 [3]. Given its applications and hardness, numerous approx-
imation algorithms and heuristics have been developed to solve
this problem efficiently. We refer the reader to the PACE challenge

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-095-0 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

2018 report [2] for a list and ranking of the various algorithms and
heuristics developed for this problem.

Traditional approaches to solve combinatorial optimisation prob-
lems include the usage of integer linear programming solvers, con-
straint programming approaches, parameterised and approxima-
tion algorithms, various heuristics including nature based meta-
heuristics (e.g., genetic algorithms) and customising algorithms
to specific input distribution. In recent years, machine learning
techniques have been explored to speed-up the computation of
solutions (c.f., [1] for a survey). Machine learning techniques are
particularly useful in applications where the same optimisation
problem is solved repeatedly on instances coming from the same
distribution [6]. Many of these learning techniques aim to learn
the optimal solution directly. An example of such an end-to-end
machine learning technique on Steiner tree problem is the Cher-
rypick solution by Yan et al. [19], where a deep reinforcement
learning technique called DQN is used together with an embedding
to encode path-related information in order to predict the optimal
solution directly. Such end-to-end approaches generally suffer from
poor generalisation (resulting in poor solutions for larger and/or
more complex problem instances) and large training requirement.
To deal with these issues, these approaches would need to collect
the training data by solving a large number of problem instances of
the same size as the test instances. Furthermore, these end-to-end
deep learning approaches also suffer from poor interpretability and
explanability of the algorithms learnt. This is because the learnt
algorithm is implicit in the millions of parameters of the deep learn-
ing architecture. Since in real industry setting, new constraints
are routinely added to the problem, poor interpretability means
that we do not know if the learnt model will still work with newly
discovered constraints and thus, new models have to be learnt from
scratch every time this occurs.

A key reason for the poor generalizability of end-to-end ap-
proaches is that they do not leverage any algorithmic insight into
the problem, instead relying solely on the input and embedding
vectors. This is also an important factor for them needing deep
learning models with poor interpretability. To address some of
these issues, a learning-to-prune approach [4, 10, 11, 16] has been
proposed. Instead of trying to predict the optimal solution directly,
it uses a supervised learning model to predict the elements (e.g.,
nodes/edges) that are unlikely to be part of optimal solution and
prune them from further consideration. Once these elements are
pruned out, the problem on the remaining elements (predicted to
be in optimal solution by the classifier or where the classifier was
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not confident) is usually quite small and can, thus, be solved using
existing exact/approximate approaches. The supervised learning
approach leverages a large number of features that can capture
the algorithmic insights from the state-of-the-art literature on the
problem. As such, classification techniques with significantly fewer
parameters, such as random forest, SVM etc. work very well in this
framework and there is no need for more complex deep learning
models. An added advantage of this framework is that it requires
far fewer labelled training instances for training, which is vital for
NP-hard optimisation problems.

In this paper, we explore if the learning-to-prune framework can
be used to solve the Steiner tree problem efficiently. Towards this
end, we carefully select an ILP formulation with small integrality
gap and the features used in the learning approach. We consider
the instances from SteinLib dataset [7, 8] and the 2018 PACE chal-
lenge [2]. We show that on the instances where the LP relaxation
doesn’t return integral solutions, learning-to-prune framework is
able to obtain optimal or near-optimal solution in orders of mag-
nitude less time compared to solving the ILP formulation directly
using Gurobi. Furthermore, we show that even on instances where
the solution returned by learning-to-prune is not optimal, we can
often achieve optimal solution by using a lightweight local search
algorithm to improve the learning-to-prune solution. Using the
learnt solution as a warm start in Gurobi is also quite effective in
finding optimal or near-optimal solutions for many of the instances
where the learning-to-prune solution is not already optimal.

We note thatmany state-of-the-art Steiner tree problem solvers [12–
15] use preprocessing and problem reduction techniques and some
of these techniques rely on features similar to ones used in our
adaptation of learning-to-prune framework. While these solvers
are very successful in practice, they need to be carefully redesigned
for each new variant of the problem. In contrast, the effort required
to adapt the learning-to-prune framework to the other variants
is likely to be considerably less. Thus, our work paves the way
for augmenting the ability of algorithm designers to develop pre-
processing techniques that can leverage the specific application
constraints and the input distributions. Our learnt preprocessing
can be combined with well-known "exact" preprocessing techniques
in different ways.

2 APPLYING LEARNING-TO-PRUNE TO
STEINER TREE PROBLEM

In the context of minimum Steiner tree problem, the learning-to-
prune framework learns a classification model to predict whether
an edge will be part of the optimal solution or not. The training
examples consists of edges from a set of training graphs and the
classification model learns a mapping from a feature vector of
an edge to its label. The edges, for which the classifier is highly
confident that they are not part of the optimal solution, are pruned
out and the remaining (hopefully much smaller) instance is then
solved using an ILP solver.

The key decisions we need to make in order to apply the learning-
to-prune framework involve (i) the choice of the ILP formulation
for the Steiner tree problem, (ii) the choice of features and (iii) the
classification models. We found that the choice of the ILP formula-
tion was crucial for the success of the learning-to-prune framework

on this problem. An ILP formulation with smaller integrality gap
seems to be particularly suitable for this framework as its LP relax-
ation can be used as a highly discriminative feature in the process
of search-space pruning. Thus, we carefully considered the various
ILP formulations for this problem and opted for a formulation based
on multicommodity flow transmission [18].

We note that there are other formulations such as those based
on directed cut [13] that are algorithmically more efficient (see
the survey article [12]). We expect that the gains from learning-
to-prune approach will be similar for these other formulations as
well.

2.1 Integer Linear Programming Formulation
In this formulation, we first convert an undirected Steiner tree
problem into a directed version by replacing each edge {𝑖, 𝑗} with
weight 𝑐𝑖 𝑗 by two directed edges (𝑖, 𝑗) and ( 𝑗, 𝑖) of the same weight
𝑐𝑖 𝑗 . Then, we consider the problem of connecting the set of terminal
nodes in the undirected graph as sending a unit flow from an arbi-
trary terminal node (referred to as root and indexed as node 1) to
the remaining terminal nodes in the corresponding directed graph.
In particular, the 𝑘𝑡ℎ flow goes from the root to the 𝑘𝑡ℎ terminal
node (the first flow goes from the root node to itself). Since all flows
are moving away from root and towards the terminal nodes, the ag-
gregation of these paths result in the Steiner tree in the undirected
graph. Next, we describe this formulation in more detail:

2.1.1 Sets and Indices.

• 𝑖 ∈ 𝑁 = {1, 2, .., 𝑛} = {1} ∪𝑉 ∪ 𝑆 : The index number of root
node is 1. Here, {1} ∪𝑉 is the set of terminal nodes and 𝑆 is
the set of remaining nodes.
• 𝐸 = {(𝑖, 𝑗)} : Set of directed edges. Note that the size of 𝐸 is
double the size of the edge set of the undirected graph.
• 𝐺 = (𝑁, 𝐸): A graph where the set 𝑁 defines the set of
nodes, the set 𝐸 defines the set of directed edges and the set
{1} ∪𝑉 ⊆ 𝑁 defines the set of terminals.
• 𝑇 ⊂ 𝐸 : Set of edges that represents a tree spanning {1} ∪𝑉
in 𝐺 .
• 𝑐𝑖 𝑗 ∈ 𝑅+: The cost of the arc (𝑖, 𝑗), for all (𝑖, 𝑗) ∈ 𝐸.

2.1.2 Decision Variables.

• 𝑦𝑖 𝑗 ∈ {0, 1}: This variable is equal to 1, if edge (𝑖, 𝑗) is in the
set 𝑇 . Otherwise, the decision variable is equal to zero.
• 𝑥𝑘𝑖 𝑗 : This is the amount of commodity 𝑘 (the amount of flow
from node 1 to 𝑘) that goes through edge (𝑖, 𝑗).

2.1.3 Objective Function. Minimize the total cost of 𝑇 :

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁
(𝑖, 𝑗 ) ∈𝐸

𝑐𝑖 𝑗 · 𝑦𝑖 𝑗 (1)

2.1.4 Constraints.

∑︁
ℎ∈𝑁

𝑥𝑘𝑖ℎ −
∑︁
𝑗∈𝑁

𝑥𝑘𝑗𝑖 =




1, 𝑖 = 1,
−1, 𝑖 = 𝑘,

0, 𝑖 ≠ 1, 𝑘 .
∀𝑘 ∈ 𝑉 , (2)

𝑥𝑘𝑖 𝑗 ≤ 𝑦𝑖 𝑗 , (3)

𝑥𝑘𝑖 𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝑉 , (4)
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𝑦𝑖 𝑗 ∈ {0, 1}. (5)

2.1.5 Constraints Explanation. As described before, we use an em-
bedded multi-commodity network flow problem to describe the
connectivity of the Steiner tree problem. In constraint 2, one unit
of commodity k must be transmitted from node 1 to node k. Con-
straint 3 indicates that when the flow is allowed in an edge, the
edge must be in the solution. Constraint 4 enforces that the flow
on any edge is non-negative while Constraint 5 enforces that the
variables 𝑦𝑖 𝑗 are binary. Constraints 2- 5 indicate that a feasible
solution must have a directed path of edges (i. e. 𝑦𝑖 𝑗 = 1) between
node 1 and a node belonging to 𝑉 .

2.2 Features
Another requirement for applying the learning-to-prune framework
is to have a set of highly discriminative features that can separate
the edges in the optimal solution from those that are not. In other
words, we want to associate a set of features with each edge that
will allow us to train a classifier separating the set of edges in the
optimal solution from the other edges. For the Steiner tree problem,
we consider features associated with the LP relaxation, weight of
the edges with respect to other edge weights and centrality of
associated nodes. Except for Eigenvector centrality, these features
can be computed quite fast and they allow us to achieve a high
degree of pruning with little loss in objective function value.

2.2.1 LP relaxation feature. The first feature is the value of edge
variables 𝑦𝑖 𝑗 in the LP relaxation of the problem. A high value of
this variable suggests a higher likelihood of the edge appearing
in the optimal solution. We didn’t consider any signals from the
dual of the problem and we also didn’t utilise the variables 𝑥𝑘𝑖 𝑗 in
this study. Note that the computation of LP relaxation requires
significantly less time compared to the ILP computation.

2.2.2 Weight-Related Features. Weused the followingweight-related
features: (i) normalised weight𝑤𝑁 (𝑒) = (𝑤 (𝑒) −𝑤𝑚𝑖𝑛)/(𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑖𝑛) where𝑤 (𝑒) is the weight of the edge 𝑒 and𝑤𝑚𝑖𝑛 and𝑤𝑚𝑎𝑥
are the lightest and heaviest edge-weight in the graph, (ii) standard-
ised weight 𝑤𝑆 (𝑒) = (𝑤 (𝑒) − 𝜇 (𝑤))/𝜎 (𝑤) where 𝜇 (𝑤) and 𝜎 (𝑤)
are the mean and standard deviation of the edge-weights, (iii) chi-
square of normalised weight𝑤𝐶 (𝑒) = (𝑤𝑁 (𝑒) − 𝜇 (𝑤𝑁 ))2/𝜇 (𝑤𝑁 )
where 𝜇 (𝑤𝑁 ) is the mean of the normalised edge-weights and (iv,
v) local rank of edge (𝑖, 𝑗) at node 𝑖 and 𝑗 . Here, local rank refers
to the rank of this edge in the sorted order of all edges (by weight)
incident at the node.

2.2.3 Centrality Features. To capture the discriminative power of
an edge further, we also use the centrality of the incident nodes.
Intuitively, the edges between highly central nodes are more likely
to be part of optimal Steiner trees as they are crucial for low-weight
connectivity. Specifically, we use the following centrality features:
degree centrality, betweenness centrality and Eigenvector centrality.
Degree centrality is defined as the number of links incident upon a
node, which is the simplest centrality feature to calculate. It simply
measures the importance of a node by howmany edges are incident
to it. Betweenness centrality is widely used in weighted graphs as
it captures the fraction of shortest paths passing through a given

node [17]. The betweenness centrality of a node 𝑣 is defined as
𝐶𝐵 (𝑣) =

∑
𝑠≠𝑣≠𝑡 ∈𝑉

𝜎𝑠𝑡 (𝑣)
𝜎𝑠𝑡

where 𝜎𝑠𝑡 is the total number of shortest
paths between 𝑠 and 𝑡 and 𝜎𝑠𝑡 (𝑣) is the number of shortest paths
between 𝑠 and 𝑡 that pass through 𝑣 . Eigenvector centrality [20] is
also an important centrality feature that captures the “influence” of
a node in the network: A high eigenvector score means that a node
is connected to many nodes who themselves have high scores.

For all centrality features, NetworkX is used to construct the
graph and calculate the feature values [5]. As these centrality fea-
tures are focusing on nodes instead of edges, each centrality metric
results in two features for an edge (𝑖, 𝑗) corresponding to the smaller
and the bigger value of the two incident nodes 𝑖 and 𝑗 .

2.3 Classification
As noted by the previous work on learning-to-prune [4, 10, 11, 16],
the exact classification model is not so crucial in this framework.
We experimented with five different classification techniques: Ran-
dom forest (RF), Support vector machine (SVM), Logistic Re-
gression (LR), K-nearest neighbour and Gaussian naive bayes.
While the SVM performs best on this problem, the main insights
from the experimental results remain the same for all these classi-
fiers. This provides us confidence that our results are not too specific
to a particular classification model, but are more broad-based.

2.4 ILP on the pruned subgraph
We run the exact Steiner tree ILP formulation on the unpruned
graph so obtained. This can be done by fixing all the edge variables
of the pruned edges to 0 in the ILP formulation and solving the
modified ILP using an ILP solver. The output of this modified ILP is
then returned as the output of the learning-to-prune approach.

2.5 Ensuring Feasibility
One issue with the learning-to-prune framework is that the re-
maining set of edges may not contain any feasible solution of the
problem that satisfies all constraints. In other words, the pruned
graph (graph remaining after the pruned edges have been removed)
may have multiple connected components with nodes in 𝑉 divided
between these components. To resolve this issue, we add back all
edges for which the corresponding variable has a non-zero value in
the LP relaxation. Assuming that the input graph was connected,
the set of edges with non-zero values in LP relaxation solution will
maintain connectivity among the terminal nodes and thus, with
their addition, feasibility will be guaranteed.

Next, we evaluate the quality of this solution as well as the
running time of this approach and the relative importance of the
different features used in the framework.

3 RESULT
3.1 Experimental Setup
In the benchmark SteinLib [7] dataset, we found that there are only
55 problem instances for which the LP relaxation of the considered
ILP formulation does not return integral solutions. Thus, we only
focus on these instances and select 80% of them with the smallest
running times as training and use the remaining 20% of the instances
with the largest running time as the test dataset. This is because
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we want to show that our model generalises from smaller instances
to larger and more complex instances in this dataset.

3.1.1 Feature Importance. The feature importance for training the
model is shown in Table 1 for a SVM classification model. Unsupris-
ingly, Table 1 shows that the LP relaxation feature is the most
discriminative of all. An important observation here is that even
though LP relaxation feature is important, it accounts for less than
half of the discriminative power of all the features. This implies
that this feature alone isn’t enough, but other features also con-
tribute significantly to improving the accuracy of the classification
model and the entire learning framework is needed. We also consid-
ered the feature importance from a logistic regression classification
model1. Similar to the case of SVM, it showed that while the LP
relaxation feature is the most discriminative, the other features
(such as the maximum degree centrality of the two incident nodes
and the minimum local rank of the two incident nodes) also prove
to be quite useful in the classification.

Feature Importance
LP relaxation feature 0.462
Normalised Weight 0.108
Variance 0.083
Degree Centrality Max 0.052
Eigenvector Centrality Max 0.048
Betweenness Centrality Max 0.048
Degree Centrality Min 0.046
Local Rank j 0.041
Eigenvector Centrality Min 0.039
Betweenness Centrality Min 0.038
Local Rank i 0.036

Table 1: Relative feature importance of different features
based on a SVM classification model

Figure 1: Trade-off obtained by varying the threshold of a
SVM classifier

1calculated as the product of the feature coefficient with the standard deviation of
feature values in the training set

3.1.2 Objective Function vs. Running Time Trade-off. As noted in
Figure 1, both SVM classifier and logistic regression classifiers
obtained a drastic reduction in running time at little loss in objective
function value. In these plots, we vary the pruning thresholds. A
pruning rate of 60-70% resulted in a significant reduction in running
time while increasing the objective function only slightly. While
the general trends are similar between SVM and logistic regression,
SVM gives a better trade-off between the objective function value
and running time. The drastic reduction in running time at little
loss in objective function value is further illustrated in Table 2 and
3, which presents the results of the learning-to-prune approach on
the 10 test instances using the SVM classification model. We first
note that on these larger and more complex instances, the time
to compute all the features including the LP values is very small
compared to the time to run the original ILP. More importantly,
the running time of the learning-to-prune approach (including
the time to compute features and then running the ILP with hard
pruning constraint) is around 99% less than the original ILP solver
time on these instances (using the Gurobi solver). In 7 of these
10 instances, the hard pruning is able to find the optimal solution
itself in significantly less time. In the remaining three instances,
the resultant increase in the objective function value because of the
mistakes in the pruning process is still very small (less than 0.6%).

Objective Objective Objective
(Original) (After Pruning) Increase %

i160-344 8307 8324 0.20
i160-244 5076 5103 0.53
i160-345 8327 8327 0
i160-343 8275 8275 0
i160-342 8348 8355 0.08
i160-313 9159 9159 0
i160-241 5086 5086 0
i160-341 8331 8331 0
i160-245 5084 5084 0
i160-242 5106 5106 0

Table 2: Objective function values returned by Gurobi ILP
solver and the learning-to-prune framework (with SVM clas-
sifier) for different test instances

At this stage, a natural question to ask is how do these results
compare with directly pruning based on the LP relaxation values
with different thresholds. Next, we consider the three instances
where the hard pruning doesn’t get optimal results and compare the
results of the hard pruning with pruning based on the LP relaxation
value. Figures 2 and 3 presents the result of such a comparison.
We observe that the hard pruning provides significantly better
objective value vs running time trade-off compared to the Gurobi
ILP solver. In particular, note that Gurobi requires considerably
more time to reach a comparable objective function value. In all
three instances, hard pruning based on a diverse range of features
provides solutions with better objective function values compared
to directly pruning based on LP relaxation values, even though it
takes some more time. In these plots, the dashed orange horizontal
line in these curves represent the objective function value of the
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Runtime Time to ILP Solver Runtime
(Original) Compute Runtime Decrease %

Features
i160-344 27245.21 54.17 157.71 99.22
i160-244 7762.75 25.68 47.13 99.06
i160-345 70653.84 51.93 242.82 99.58
i160-343 20897.36 50.54 114.90 99.21
i160-342 91351.38 60.09 1384.39 98.42
i160-313 3832.54 15.25 84.73 97.39
i160-241 6446.48 24.78 32.78 99.11
i160-341 52473.68 53.65 104.74 99.70
i160-245 3014.05 28.05 15.95 98.54
i160-242 4817.80 27.34 42.81 98.54

Table 3: Running time taken by Gurobi ILP solver and the
learning-to-prune framework (with SVM classifier) for dif-
ferent test instances

optimal ILP solution on the instance obtained by pruning all edges
with zero LP relaxation value. Note that even this value is higher
than the solutions from our hard pruning approach.

Figure 2: Comparing hard pruning (referred “ML Pruned”)
with LP-based pruning and Gurobi ILP solver on the original
formulation of Steiner tree problem on instances i160-244.
The dashed blue horizontal line represents the optimal ILP
solution, while the dashed orange horizontal line represents
the optimal ILP solution on the instance obtained by pruning
all edges with zero LP values.

In applications where we wish to reduce the optimality gap even
further, we can use the soft pruning approach. The idea here is
that instead of adding a hard constraint that no edge can be taken
from the set of pruned edges (fixing those edge variables to 0), we
add a soft constraint that a small constant number of edges can
be taken from the set of pruned edges in the returned solution. In
other words, we add the constraint that sum of all edge variables
corresponding to pruned edges has to be less than equal to a small

Figure 3: Comparing hard pruning (referred “ML Pruned”)
with LP-based pruning and Gurobi ILP solver on the original
formulation of Steiner tree problem on instance i160-342.

constant. This is implemented by simply adding the corresponding
constraint in the ILP formulation.While the soft pruning still retains
all the edge variables in the ILP formulation, it prunes the search
space considerably. When applied on the instance i160-344, the soft
pruning approach, that allows just one edge from the pruned set,
finds the optimal solution of the original problem. The running time
of this approach on this instance is around 3000 seconds, which is
still considerably less than the original ILP time of around 27000
seconds, but more than the time of the hard pruning approach
(around 150 seconds).

3.2 Results on PACE Challenge datasets
Next, we consider the 200 instances from the track 1 of the 2018
PACE challenge [2]. This track provided the benchmark dataset for
the exact search techniques. Of the 200 instances, the LP relaxation
of our ILP formulation was able to compute the optimal integral
solution on 148 instances. On another 17 instances, the LP solution
was very close to the optimal integral solution. Thus, we focused
on the remaining 35 instances. Out of these instances, we used 13
for training and tested on the remaining 22 instances. Based on
the results on the SteinLib dataset, we decided to use SVM as the
classification technique for this dataset. Table 4 shows that on all of
these instances, the learning to prune approach provides optimal
or near-optimal solutions.

On the few instances where the solution returned by learning-to-
prune was not optimal, we use a lightweight local search algorithm
to improve the solution.We define the local neighbourhood function
to consist of solutions that can be obtained by removing one edge
from the current solution and adding one replacement edge (from
outside the current solution) in its place. We find the best solution
in this local neighbourhood. This can be computed efficiently as
the returned solution is a tree and removing an edge leaves the
tree disconnected. Thus, to find a replacement edge, we only need
to consider edges that connect the two components and find a
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Objective Objective Objective
(Original) (After Pruning) Increase %

010 2338 2344 0.26
109 939 942 0.32
141 2200557 2200560 0.0001
160 1996 1996 0.0
161 5199 5209 0.19
162 5193 5193 0.0
164 5205 5205 0.0
165 5218 5218 0.0
171 42 42 0.0
172 7229 7304 0.07
173 71 72 1.4
176 10519 10519 0.0
195 54 54 0.0
196 100 101 1.0

Table 4: Objective function values returned by Gurobi ILP
solver and the learning-to-prune framework for different
test instances of PACE Challenge dataset

minimum weight replacement edge. We found that this local search
algorithm was able to yield the optimal solution when initialised
with the learning-to-prune solution. For instance, on instance 010,
the objective function values of the optimal solution and learning-
to-prune solution are 2338 and 2344, respectively. The local search
was able to improve the learning-to-prune solution to the optimal
solution. Similarly on instance 109, the optimal solution and the
learning-to-prune solution had objective function values of 939
and 942 respectively. Again, the local search was able to obtain the
optimal solution.

We found that using the learning-to-prune solution as a warm
start in the Gurobi ILP solver is also quite effective. For instance,
on instance 010 (one of the few instances where the learning-to-
prune doesn’t return an optimal solution), Gurobi warm start from
learning-to-prune returns an optimal solution.

The track 2 of the PACE challenge was dedicated to instances that
have small tree-width. Surprisingly, we discovered that our learn-
ing model that was trained on track 1 instances (exact algorithms
track) was quite effective on track 2 instances as well. The solution
obtained after pruning was optimal in 9 out of 15 track 2 instances
where the LP and ILP solutions had different objective function
values. On the remaining 6 test instances, the solution obtained
using the learning-to-prune framework was within a multiplicative
factor of 1.0002 of the optimal solution. Thus, we conclude that our
learning model is also quite robust to changes in input distribution
and instance sizes.

4 CONCLUSION
Our experiments show that the learning-to-prune framework pro-
vides optimal or near-optimal solutions on instances of the SteinLib
and PACE challenge benchmarks at a fraction of the costs of the
Gurobi ILP solver. While the feature based on LP relaxation is unsur-
prisingly the most discriminatory feature for classification, the hard
pruning is able to achieve better objective function value compared
to pruning directly based on LP relaxation values. It shows that com-
bining the signal from different features using classification models
is an effective strategy to prune the problem instances. On the few

instances where the learning-to-prune solution is not optimal, we
show that using it as a warm start for Gurobi ILP solver or using it
as the initial solution for a lightweight local search heuristic can
often yield the optimal solution. We expect that this framework will
also be effective on many other network optimisation problems.
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The maximum cut problem (max cut) is one of the most well-known NP-hard problems [12] and has
garnered interest among researchers [19, 14, 2]. There are numerous heuristic, approximation, and exact
algorithms proposed to solve the problem. Prominent among these are the well-known SDP relaxation
algorithm [7, 17] and algorithms for specific graph types [18, 8, 16, 23].

Several studies, including those by [5, 4, 15], have concentrated on pre-processing techniques for the
problem. These methods aim to either decrease the size of the problem instance or present simpler
instances for the max cut algorithms to process. By doing so, they potentially reduce the computational
time required for solving the max cut problem.

In our studies, we explore pre-processing strategies for the max cut problem, particularly when ad-
dressed using quantum or quantum-inspired computing. Quantum(-inspired) computing is considered to
have the potential to enhance the efficiency of solving various computational problems [24, 10, 6]. In
particular, these types of computers are expected to provide more effective algorithms for tackling the
quadratic unconstrained binary optimization (QUBO) [9, 21]. Because max cut is a problem that can
be easily expressed within the QUBO framework [3, 22], it serves as an exemplary case to illustrate the
effectiveness of quantum(-inspired) approaches in QUBO contexts.

Although minimizing computation time is important for solving the max cut problem, there is an
additional challenge in addressing the problem with quantum(-inspired) QUBO solvers. Since quantum(-
inspired) computers will not be commercially available for the next several decades, we are compelled
to utilize these solvers through cloud services. This requires us to transmit our problems to the service
providers, the step which often results in communication becoming a significant bottleneck [20, 13].
Therefore, our focus in this paper is a pre-processing that diminishes the costs associated with this
communication.

The communication cost of the max cut problem is strongly related to the number of edges in the
input graph. We therefore propose to use the graph sparsification technique by the effective resistance
edge sampling [11, 1, 25] to reduce the communication cost. The effective resistance technique has been
demonstrated to significantly reduce the number of edges in a graph while preserving the cut size [25].
Expanding on these ideas, we suggest using graph sparsification before submitting the graph to QUBO
solvers, with the aim of obtaining large-sized cuts from the QUBO solvers.
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The uncapacitated facility location problem at the k-level involves ensuring that each client is serviced
by a sequence of k different facilities. This scenario is commonly encountered in complex logistical
systems, where central depots distribute goods through smaller depots to the clients. Given its inherent
complexity, particularly when k > 1, the use of approximation algorithms becomes crucial for swiftly
obtaining high-quality feasible solutions [2, 4, 6, 3].

This study specifically addresses a four-level facility location problem encompassing plants (P), ware-
houses (W), distribution centers (D), and retail stores (S). In this context, the locations of plants and
retail stores are already known, and the objective is to select suitable facilities for warehouses and dis-
tribution centers. The formulation of the four-level facility location problem is approached through a
bipartite boolean quadratic programming (BBQP) model, and its solution is derived using a heuristic
technique involving Tabu search with random-key sequence embedded as diversification. To provide
clarity, the notations used in the formulation are presented next:

Input parameters
P Set of potential plant locations with, indexed by n
W Set of potential warehouse locations, by i
D Set of potential distribution center locations, indexed by j
S Set of potential retail stores (clients), indexed by m
G=(V,A) is a graph with nodes V and directed arcs A

fmab
Cost of moving a bundle of products for retail storem along an arc (a,b)
, Note: for a=j and b=m, we can replace fmab with fjm

fwi Fixed cost of opening a warehouse in W
fdj Fixed cost of opening a distribution center in D
uw Upper bound for number of warehouses to be opened
ud Upper bound for number of distribution centers to be opened

Decision Variables
wi is 1 if warehouse i is opened, 0 otherwise
Dj is 1 if distribution j is opened, 0 otherwise

xmni
is 1 if an opened plant n delivers a truckload for retail store m to an open warehouse i,
and 0 otherwise

yjm
is 1 if an opened distribution center j delivers a truckload to an opened retail store m,
and 0 otherwise

The BBP model for the objective of a four-level facility location problems to minimize the total cost
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TC is:

Minimize TC=
∑

i∈W

∑

n∈P

∑

m∈S

∑

j∈D
fmijxmniyjm +

∑

i∈W
fwiwi +

∑

j∈D
fdjdj+

∑

i∈W

∑

n∈P

∑

m∈S
fmnixmni +

∑

m∈S

∑

j∈D
fjmyjm (1)

subject to
∑

n∈P

∑

i∈W
xmni = 1, ∀m ∈ S (2)

∑

j∈D
yjm = 1, ∀m ∈ S (3)

∑

i∈W
wi ≤ uw (4)

xmni ≤ wi, ∀n ∈ P, m ∈ S, i ∈ W (5)
∑

j∈D
dj ≤ ud (6)

yjm ≤ dj , ∀m ∈ S, j ∈ D (7)
xmni, yjm, wi, dj in{0,1}, ∀n ∈ P, m ∈ S, i ∈ W, j ∈ D (8)

Expanding on the research presented in [5, 1], a heuristic is implemented to address the BBQP
model, utilizing the Tabu search with random-key sequence embedded as the diversification strategy. The
diversification procedures outlined in this paper are contingent on the choice of the next improvement step.
While existing diversification approaches in the literature involve various manipulations of the solution x,
the initial demonstration of the effectiveness of improvement steps as a diversification approach for general
UBQP was provided. The implementation of improvement processes can yield a substantial number of
potential diversification approaches by employing different sequences. In this study, we adopt several
methods to generate diverse sets of orders for the implementation of improvement procedures. To assess
the heuristic’s efficacy, the BBQP model is also solved using the Gurobi 10.0 QP solver across a range of
benchmark instances provided in [4]. These instances, featuring four levels, consist of randomly generated
scenarios with larger numbers of customers and potential facilities. The datasets encompass between 500
and 2,000 customers and between 100 and 200 potential facilities. Furthermore, a comparative analysis
is conducted on four Mixed-Integer Linear Programming (MILP) formulations equivalent to the BBQP
model using the Gurobi 10.0 LP solver. The proposed heuristic and the Gurobi 10.0 solvers were executed
sequentially on a single core of an Intel Xeon Quad-core E5420 Harpertown processor, featuring a 2.5
GHz CPU with 8 GB memory. The initial findings will be reported at the conference.
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1 Introduction
Facility location is a spatial optimisation problem concerning the identification of the optimal location
of facilities under certain constraints. Typically, the aim is to find the locations of facilities so that
demand on every node on a grid is fulfilled, and the maximum population is covered in the most cost-
effective manner. The decisions on where to locate facilities often require estimating different parameters
associated with the problem, for example costs, demand, distances, etc. These parameters are uncertain
and may fluctuate with time and circumstances. Based on this, recent research has been aimed towards
developing facility location models under uncertainty.

In uncertain environment problems, the parameters are variable with, usually unknown, probabil-
ity distributions [8]. In the recent body of literature, a number of approaches have been proposed to
incorporate uncertainty in the location problem at various levels. For example, in [2], uncertainty is
incorporated via assumptions about the demand distributions and their relation to the location deci-
sions. However, these distributions are not informed by observed data. In [5], a hybrid approach is
presented, where uncertainty in the data and locations are accounted for using a Bayesian spatial interac-
tion model. Nonetheless, this uncertainty is not directly incorporated within the optimisation procedure,
which considers the objective functions to be deterministic.

Following and extending this branch of literature, our research aims at developing facility location
procedures which account for uncertainty in the model and in the data. To do so, we extend Bayesian
combinatorial optimisation methods [1][3] to optimal facility location problems. The motivating applica-
tion of our research involves the design of hybrid wind-photovoltaic electrification systems [4], with the
aim of accounting for uncertainty associated with time, weather, energy supply and demand.

2 Bayesian optimisation
Bayesian optimisation is used to solve optimisation problems when the objective function is expensive
to evaluate. The problem of globally minimising an objective function f in a search space X can be
formulated as arg minx f(x). To facilitate the optimisation process, a surrogate function representing
f(x) is defined. To guide the search, Bayesian optimisation employs an acquisition function, a(x) that
strategically selects the next input point, x(t) to evaluate. Upon selecting x(t), the algorithm proceeds to
evaluate the true function, x(t)). This evaluation result x(t), f(x(t)), is integrated into the new dataset.
This new updated data forms the training set for the next iteration of the optimisation procedure. [7][6].

3 Bayesian optimisation for Facility Location
The objective function of our problem is the simplified version of the model proposed in [4] and is defined
at the cost of installing solar panels on a grid.

minimise
x

f(x) =
n∑

i=1
xig(Ci, Wi) (1)

where, f(x) is a generalised objective function, x is a discrete decision variable to install panels,
x ∈ {0, 1}n, g is a function that describes the relationship between various parameters, Ci is the cost
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of installing a panel at location i, Wi is a generic vector of variables, associated with weather, energy
supply and demand, grid layout, etc. The problem presented (1), is subject to constraints related to
energy supply and demand, budget, coverage, choice of equipment. The parameters and variables need
to be estimated themselves on the basis of available data and are subject to uncertainty, hence making
the objective function expensive to evaluate.

Using a Bayesian optimisation approach for combinatorial optimisation over discrete search spaces
(BOCS) [1], we present a method to define a surrogate for (1). The surrogate function fα(x) = α0 +∑

j αjxj +
∑

i,j≥i αijxixj is a linear function in α = (αi, αij) ∈ Rn and quadratic in the binary decision
variable x. To guide the search the acquisition function, a(x) = arg minx fα(x) + λP (x), based on
Thompson Sampling is employed with the addition of a penalty.

Our research presents a novel approach by extending the BOCS method to account for constraints,
uncertainty, grid structure and interaction of the allocation nodes. We extend the general algorithm de-
scribed in [1], with the surrogate model remaining the same linear function and modifying the acquisition
function to include the problem constraints.

Incorporating constraints within a combinatorial domain for a facility location problem is challeng-
ing within the framework of BOCS. Hence, we extend this framework by introducing a probabilistic
reparameterisation [3] for the decision variable x as p(x | θ). This distribution is parameterized by a
vector of continuous parameters θ. Given this reparametisation then, the acquisition function is redefined
as the expected value Ex∼p(x|θ)[fα(x)]. This acquisition function is then optimised over θ, to sample
x ∼ p(x | θ̂) as the next evaluation point. This allows to define optimisation of the acquisition function
on a continuous space.

By employing Bayesian optimisation we incorporate uncertainty in the optimisation procedure itself,
while allowing for an integrated framework in which the estimation of optimisation variables is data driven.
We demonstrate the performance of our method in comparison to other state of the art algorithms.
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As the electric vehicle (EV) market continues to expand, the efficient deployment of charging facilities
has become imperative to support the increasing charging needs of electric vehicles. The charging station
location problem (CSLP) arises to optimize the locations of charging stations, thereby refueling EVs
to reach their destinations. This paper presents an integrated approach for the CSLP combining the
Multi-Path Refueling Location Model (MPRLM) with considerations of different EV driver behaviours
in relation to a variety of charging options and routing decisions. The study aims to ensure that the
placement of charging stations aligns with the diverse charging needs and decision-making patterns of
private EV drivers.

By incorporating deviation paths into a flow-based set-covering model, Huang, Li and Qian (2015)
developed a novel CSLP model called the Multipath Refueling Location Model (MPRLM) to locate
refueling stations at nodes within the network. The authors considered multiple potential routes between
origin-destination pairs for users of alternative fuel vehicles (AFVs), aiming to minimizing overall system
costs while satisfying all the charging needs of AFV drivers [3]. In this study, we first expand upon the
MPRLM initially designed for alternative fueling stations, adapting it to different charging stations for
EVs, including slow-charging, fast-charging, and battery-swapping stations. Every node in the network is
permitted to have various types of charging stations installed. This extended MPRLM considers different
charging rates of multiple charging stations, assuming a linear recharging rate over time. Our objective is
to strategically position charging stations, minimizing the total cost while balancing EV user satisfaction
and ensuring all EV users can reach their destinations efficiently. This involves two key objectives:
firstly, minimizing the total installation and operational costs across various charging station types; and
secondly, reducing the overall charging time for EV users. To prevent the unbalanced employment of
most affordable charging stations, our MRPLM introduces a capacity constraint for each type of charging
unit, which denotes the maximum number of various charging units that can be installed at each node.

To demonstrate the model’s efficacy, we test our extended MPRLM and the original MPRLM without
the integration of diverse charging options on the 25-node highway network. The 25-node network was
first provided for traveling salesman location problems [4] and then adapted to be used in charging
station location problems [2]. By conducting a comparative analysis of the outcomes, the results show
improvements in balancing the overall system costs and total charging time of EV users, as well as
optimizing charging station utilization when diverse charging options are taken into account.

Then, we continue to refine the extended MPRLM by incorporating the different charging profiles of
EV users. Under the battery leasing/electric car sharing service business models, Yang et al. [5] identified
four distinct customer types, each characterized by specific thresholds for range anxiety and loss anxiety.
Considering “range anxiety” and “loss anxiety”, the users’ satisfaction function was developed for three
stages according to the battery’s remaining capacity, the range anxiety threshold, and the loss anxiety
threshold. Furthermore, Guo et al. [1] introduced a range anxiety function and evenly divided the
customers in each origin-destination (O-D) pair into two distinct groups with different thresholds of range
anxiety. In our study, we categorize private EV drivers based on their sensitivity levels to range anxiety,
charging costs and charging time, which encompasses high sensitive, range-anxious, cost-sensitive, time-
sensitive and low sensitive profiles. For each O-D pair journey, we assume an equal number of private
EV users from each of these groups.

Subsequently, we incorporate these distinct satisfaction functions for these varied diverse EV drivers
into the expanded MPRLM which now includes a range of charging options. To incorporate personal be-
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havioral insights, we develop satisfaction functions of different driver profiles and establish the satisfaction
thresholds for each EV driver category, which is informed by the review of existing literature on the CSLP
for EVs with the consideration of diverse driver types [1][5]. In this Integrated Behavioral Multipath Re-
fueling Location Model (IB-MPRLM) , the charging station located at a certain node can only refuel an
EV when the user’s satisfaction is higher than the threshold of the EV user. The satisfaction function
for various EV drivers during their journey is assumed to relate with the deviation from the shortest
path, the type of charging stations and the battery’s remaining capacity. EV users sensitive to range
anxiety exhibit a more substantial requirement for the remaining fuel capacity, demanding more reliable
and accessible charging options to alleviate their concerns. On the other hand, EV users identified as
having low sensitivity to range anxiety are characterized by a lower threshold for satisfaction, indicating
they are more easily satisfied with available charging facilities during their origin-destination (O-D) pair
journeys. Additionally, the users highly sensitive to charging time tend to prefer routes that minimally
deviate from the shortest path to a charging station and the fast-charging options, prioritizing the total
traveling and charging time. Furthermore, cost-Sensitive EV users are more likely to be satisfied and get
refueled by the slow-charging station than fast-charging stations at the same location when the remaining
state of charge is relatively high, even if it entails longer charging time. By incorporating diverse profiles
of EV drivers into the model, we aim to ensure that the selected charging station locations not only meet
the charging demands of EVs but also align with the convenience and accessibility expectations of various
drivers.

Our forthcoming step involves evaluating the IB-MPRLM on the established 25-node network [2][4]
to validate the model’s ability to handle the complexity and provide an efficient solution for the CSLP.
Through sensitivity analysis which examines different distribution scenarios of diverse driver profiles, our
objective is to understand the impact of diverse driver profiles and their charging preferences on the
optimal siting of EV charging stations.

In conclusion, our paper introduces a novel approach to the CSLP for EVs, bridging the gap between
technical optimization models and various driver profiles, to facilitate the transition towards sustainable
urban mobility. Our findings validate the proficiency of the first extended MPRLM in accommodating
various charging options and we aim to further test the enhanced IB-MPRLM’s ability to cater to the
heterogeneous driving public.
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This talk examines a stochastic network optimization problem in which we modify arc lengths in order
to guarantee that a specified path within the network will be optimal with sufficiently high probability.
Modifying the arc lengths (by increasing or decreasing them from their original values) incurs a per-unit
nonnegative modification cost.

Our problem data involves a directed network G with nodes N and arcs A and a given diversion
path (DP) starting at a source node s ∈ N and ending in a sink node t ∈ N . For each arc (i, j) ∈ A,
we let cij be the arc length for (i, j), and we let mij denote the modification cost for (i, j). In the
deterministic version of this problem, all arc lengths are deterministic (and nonnegative), and hence we
seek to minimize the sum of modification costs required to ensure that the diversion path is optimal.
Moreover, the diversion path must be better than all other solutions by at least some margin, which is
given by parameter δ. This criterion is known as the “δ condition.” We call this problem the Diversion
Path Problem (DPP).

In the stochastic version, each arc length is an independent, uniformly-distributed random variable.
(The lower bound on the arc lengths is nonnegative.) Given a parameter 0 < τ ≤ 1, the goal is to
minimize the sum of modification costs required to guarantee that the DP satisfies the delta condition
with probability at least τ . This problem is called the Chance-Constrained Diversion Path Problem
(CC-DPP), and this problem is the subject of our talk.

A DPP instance is depicted in Figure 1(a) with source node 0 and sink node 2. There are just two
paths in this network: 0 → 2, whose length is 8 units, and 0 → 1 → 2, which is the diversion path and
has a length of 9 units. In the examples of Figure 1, we set δ = 1.

0

1

2

(5; 1) (4; 2)

(8; 2)

(a) Deterministic case

0

1

2

([4, 5]; 1) ([3, 5]; 2)

(8; 2)

(b) Stochastic case

Figure 1: Small networks to illustrate DPP. The diversion path is 0 → 1 → 2 and δ = 1. Notation
(cij ;mij) on arcs represents the length and modification cost for arc (i, j). The lower and upper bounds
for arc lengths are represented as [cL

ij , c
U
ij ] in the stochastic case, respectively.

For the DPP, we can either increase the length of arc (0, 2) by two units, or decrease the total length
of arcs (0, 1) and (1, 2) by the same amount (or a combination thereof). Because the modification costs
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are given as m01 = 1 and m02 = m12 = 2, an optimal solution to the DPP reduces the length of arc (0, 1)
by two units.

The CC-DPP is depicted in Figure 1(b), where the lengths of arcs (0, 1) and (1, 2) are now uniformly-
distributed random variables within ranges [4, 5] and [3, 5], respectively. The length of path 0 → 1 → 2
now follows a trapezoidal distribution between 7 units and 10 units. The cost of path 0 → 2 is 8 units,
meaning that with δ = 1, at least τ% of the DP’s trapezoidal distribution must be less than or equal to
7. Again, it is optimal to modify the length of arc (0, 1). Decreasing the length of (0, 1) by d units, so
that its length is now distributed between [4 − d, 5 − d], shifts the range of the trapezoidal distribution
for the DP’s cost to [7− d, 10− d]. In particular, the cumulative distribution function g(u|d) of the DP’s
cost is given by

g(u|d) =





(1/4)(u− (7− d))2 for 7− d ≤ u ≤ 8− d
(1/4) + (1/2)(u− (8− d)) for 8− d ≤ u ≤ 9− d
1− (1/4)((10− d)− u)2 for 9− d ≤ u ≤ 10− d.

If, for instance, τ = 3/4, then setting d = 2 turns out to be optimal (as g(u|2) = 3/4).
The DPP might represent a case in which the optimizing agent who modifies the arc lengths may be in

conflict with the agent who travels in the network, as is the case in most diversion optimization problems.
The diversion path may be preferred by the leader (i.e., the agent modifying the arc lengths) if the leader
can best monitor and control those arcs. The follower (who traverses the path) may conduct illegal
activities, communicate with hostile entities, or attack critical infrastructure somewhere along the path.
If the follower deviates from this path and engages in these activities on some arc outside the diversion
path, the leader would be unable to arrest the follower, intercept the follower’s communications, or
defend against the follower’s disruptions as the case arises. The DPP is a version of the network diversion
problem (NDP). One early NDP study seeks to remove links and nodes so as to route the flow through
a specific set of arcs [4]. Cullenbine et al. [3] propose a polynomial-time algorithm to NDP as well as an
improved mixed-integer programming formulation. Lee et al. [5] extend the network diversion problem
to a multiple flows network diversion problem in which there exist multiple source-sink pairs on a given
network.

The approach we take in our study is to find “induced sets” as a function of modification decisions.
The induced set is the set of all data points in the uncertainty set, which itself is a hyperrectangle formed
based on the uniform random variable distributions, shifted by arc cost modification decisions. (Many
of these concepts also arise in inverse optimization, see, e.g., [1, 2].) The area of the induced set is
thus the percentage of the uncertainty set for which the DP satisfies the δ condition. Our approach
constructs restrictions and relaxations of the induced set, which can be used to bound the probability
that DP satisfies the δ condition for a proposed set of modification decisions. We then provide a method
for optimizing the modification decisions based on those bounds, and for then refining those bounds to
provide convergence to an optimal solution for the CC-DPP.
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1 Introduction
The fixed charge transportation problem (FCTP) is a generalization of the well-known transportation
problem, which includes a fixed cost of transportation between any source and destination, in addition to
the variable cost per unit of transportation. However, while the transportation problem is polynomially
solvable, FCTP is known to be NP-hard. There have been a few studies on solving FCTP [1] more
efficiently using the current mixed-integer linear programme (MILP) solvers, but even the state-of-the-art
method struggles to solve instances of even medium-size. In this paper, we discuss a cutting-plane-based
solution approach to solve FCTP more efficiently. For this, we exploit the single-node fixed-charge flow
polytope as a relaxation of the FCTP polytope, for which we propose two new classes of valid inequalities
(VIs) based on generalizations of the well-known flow cover inequalities (FCIs) proposed by [3]. We
further provide conditions under which our proposed VIs define facets for the single-node fixed-charge
flow polytope. We show the effectiveness of the proposed VIs in efficiently solving the instances of FCTP
from the benchmark data sets.

The single-node flow set is defined as follows [2]: S = P ∩ Rn × Bn, where

P =
{

(x, y) ∈ Rn × Rn :
∑

i∈N

xi ≤ b, xi ≤ aiyi, x ≥ 0, 0 ≤ yi ≤ 1 ∀i ∈ N = {1, . . . , n}
}

,

where 0 < ai ≤ b, ∀i ∈ N . ai represents the capacity of arc i ∀i ∈ N entering a single node, while b is
the capacity of a single arc going out.

2 Flow Cover-based Inequalities
A set C ⊆ N is a flow cover of S if

∑
i∈C ai > b. λ =

∑
i∈C ai − b is called the flow cover surplus. Then,

the following is well well-known flow cover inequality (FCI):
∑

i∈C

xi ≤ b −
∑

i∈C

(ai − λ)+(1 − yi) (FCI)

In the following, we introduce two new classes of VIs for conv(S). The first class of VIs is a generalization
of the well-known FCI using the idea of partitioning a flow cover. Hence, we refer to the resulting VIs as
partition-based flow cover inequality (PBFCI). Our second class of VIs are specifically tailored for flow
covers with very high surplus, i.e., C : λ ≥ maxi∈C{ai}.

2.1 Partition-based Flow Cover Inequality
Given a flow cover C, let C1 = {i ∈ C :

∑
i ai < b}, A1 =

∑
i∈C1

ai, C2 = {i ∈ C \ C1 : ai + A1 > b},
λ′ =

∑
i∈C2

(ai − (b − A1)) = λ − (|C2| − 1)(b − A1), b′ = b + (|C2| − 1)(b − A1), a1 = mini∈C{ai},
a2 = mini∈C:ai>a1{ai}, am = maxi∈C{ai}.

Proposition 1. Given a flow cover C and its partition C1, C2, the following is a VI for conv(S):
∑

i∈C

xi ≤ b′ −
∑

i∈C1

(ai − λ′)+(1 − yi) −
∑

i∈C2

(b − A1)(1 − yi) (PBFCI)
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Proposition 2. For a given flow cover C, let I be the singleton set of (FCI), while IP B be the set of
(PBFCI) corresponding to all possible partitions C1, C2 of C. Then, I ⊆ IP B ∀C ⊂ N .
Proposition 3. Given a flow cover C and its partition C1, C2, (PBFCI) separates the following set of
fractional points (x̄, ȳ) ∈ P from conv(S):

(a) when λ ≤ a1 : x̄i = ai, ȳi = 1 ∀i ∈ C \ {j}, x̄j = aj − λ, ȳj = (aj−λ)
aj

;; x̄i = 0, ȳi = 0 ∀i ∈ N \ C

(b) when a1 < λ ≤ am :

(i) x̄i = ai, ȳi = 1 ∀i ∈ C1; x̄j = b − A1, ȳj = b−A1
aj

for each j ∈ C2; x̄i = ȳi = 0 ∀i ∈
(C2 \ j) ∪ (N \ C)

(ii) ∃j ∈ C : aj > λ : x̄j = aj −λ, ȳj = (aj−λ)
aj

; x̄i = ai, ȳi = 1 ∀i ∈ C\{j}; x̄i = 0, ȳi = 0 ∀i ∈ N \C

Theorem 1. Given a flow cover C, (PBFCI) defines a facet of conv(S) if λ < maxi∈C{ai} when |C2| = 1;
λ ≤ maxi∈C{ai} when |C2| > 1.

2.2 Heavyweight Flow Cover Inequality
In this section, we focus on those flow covers C : λ ≥ am. Under such conditions, (FCI) becomes trivial,
while (PBFCI), although non-trivial, fails to generate facets of conv(S). We now propose a new class
of VIs that can generate facets of conv(S) under such conditions. We refer to our new class of VIs as
heavyweight FCI since it is based on flow covers that contain an item such that the sum of its weight
with any other item in C exceeds the capacity outgoing arc (b), i.e., i ∈ C : ai + am > b. We call such an
item a heavyweight.
Proposition 4. For a given flow cover C,

(a) the following is a set of VIs of conv(S).
∑

i∈C

xi −
∑

i∈C\{j}
min{(b − aj), ai}yi − min{(b − am), aj}yj ≤ (aj − (b − am))+ ∀j ∈ C (HWFCI)

(b) at least one of the VIs in (HWFCI) corresponding to j ∈ C : aj + am > b is non-trivial.
Proposition 5. Given a single-node flow set S : ai > b/2 ∀i ∈ N and its flow cover C, let I be the
singleton set of (FCI), while IHW be the set of (HWFCI) corresponding to ∀j ∈ C. Then, I ⊆ IHW ∀C ⊆
N .
Theorem 2. Given a flow cover C,

(a) if ai ≥ b/2 ∀i ∈ C and ∃k ∈ C : ak > b/2, then at least one (HWFCI) defines a facet of conv(S).

(b) if ai > b/2 ∀i ∈ C, then (HWFCI) defines a facet of conv(S) ∀j ∈ C.

3 Conclusions
We presented a cutting plane-based solution method for FCTP based on two new classes of VIs for the
single-node fixed-charge flow polytope, which appears as a relaxation of the FCTP polytope. Further, we
derived the conditions under which our proposed VIs are facet-defining for the single-node fixed-charge
flow polytope. Our limited computational results demonstrate the efficacy of our proposed cutting-plane
method, which effectively reduces the computation time for solving instances of FCTP.
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We consider the problem of minimizing the number stops for a set of trains T operating on a railway
line (origin and destination stations specified) without branches. The objective is to assign passengers
of each origin-destination (OD) pair to different trains in such a way that train capacity and passenger
demand constraints are satisfied with minimal stoppages. The literature refers to this problem as the
train stop scheduling problem (TSSP) [1, 2]. The problem has been extensively studied for decades, yet
an exact solution approach has not been proposed. Several valid inequalities have been proposed in [3]
to strengthen the mixed-integer programming formulation and solve the problem exactly in a reasonable
amount of CPU time. This conference paper presents the study carried out in [3].

To formulate the mixed integer linear programming (MILP) model, we introduce the undirected track
graph G = (N, E), consisting of a finite set of stations (vertices) N and a finite set of sections (edges)
E connecting adjacent stations. The stations are sequentially numbered 1, 2, . . . , n, with stations 1 and
n denoting the origin and destination stations, respectively. We assume that passenger demand between
pairs of stations is symmetric in both directions. Since lines are typically operated in both directions and
passenger demand is symmetrical, we focus only on trains traveling in one direction. The notations used
in the formulation and the rest of the paper are summarized in Table 1.

Table 1: Notations
T set of trains, T = {1, 2, . . . , m} indexed by t
N set of stations, N = {1, 2, . . . , n} indexed by i and j
E set of railroad sections, E = {(i, i + 1)|i, i + 1 ∈ N}
O set of OD pairs/station pairs, O = {(i, j)|i, j ∈ N, i < j}
L set of classes, L = {1, 2, . . . , l} indexed by r
Cr,t capacity of class r ∈ L in train t ∈ T
dr

i,j passenger demand for the OD (i, j) ∈ O in class r ∈ L

xr,t
i,j passenger flow variable indicating number of seats to be allocated for the OD

(i, j) ∈ O in class r ∈ L of train t ∈ T
yt

i binary stop variable = 1 if train t ∈ T stops at station i ∈ N , = 0 otherwise

Here xr,t
i,j and yt

i are the decision variables, also referred to as seat allocation and stoppage variables
respectively. The TSSP is formulated mathematically as the MILP problem (1) - (7).

The objective (1) is to minimize the total number of train stops. Constraints (2) enforce the train
capacity restriction, which implies that for each section of a train’s route, the total number of passengers
in any class cannot exceed the capacity of that class. Demand constraints (3) for a given OD pair of a
particular class require that the total number of seats allocated across all trains for this OD pair exceed the
passenger demand, i.e., no passenger demand is rejected. Constraints (4) and (5) ensure that passengers
traveling between stations i and j can only be assigned to train t if it stops at both stations. Conversely,
if passengers are traveling from station i to station j on train t (i.e., x.,t

ij > 0), then train t must make
stops at both stations. The large constants Mr,t

i,j can take on the values = min{Cr,t, dr
i,j}. Note that here

m implies an upper bound on the number of trains required to serve the passenger demand.
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Minimize
∑

t∈T

∑

i∈N

yt
i (1)

subject to
∑

i′≤i

∑

j>i

xr,t
i′,j ≤ Cr,t ∀i ∈ N \ {n}, ∀t ∈ T, ∀r ∈ L (2)

∑

t∈T

xr,t
i,j ≥ dr

i,j ∀(i, j) ∈ O, ∀r ∈ L (3)

xr,t
i,j ≤Mr,t

i,j yt
i ∀(i, j) ∈ O,∀t ∈ T, ∀r ∈ L (4)

xr,t
i,j ≤Mr,t

i,j yt
j ∀(i, j) ∈ O,∀t ∈ T, ∀r ∈ L (5)

xr,t
i,j ≥ 0 ∀(i, j) ∈ O,∀t ∈ T, ∀r ∈ L (6)

yt
i ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (7)

The proposed valid inequalities are - (1) Symmetry Breaking (SB), (2) Minimum Stoppage (MS), (3)
Station Subset (SS), (4) Chvátal-Gomory (CG) inequality, (4) Traffic Restriction (TR), and (5) Polar
(PR) inequalities. The concept of polar duality [4] has been utilized to find more complex valid inequalities
which may be hard to find otherwise. Despite the problem’s high practical relevance, valid inequalities
for the problem have not yet been studied in the literature. An aggregation procedure has been proposed
to solve large size problem instances exactly. The reader is referred to [3] for further details.

Computational study on several randomly generated problem instances demonstrate the efficacy of
the proposed valid inequalities. From Figure 1 it can be observed that the LP relaxation bound of (1) -
(5) is only about 30% of the optimal solution. On addition of the proposed valid inequalities, the lower
bound surges to about 87%. Therefore, the LP formulation is significantly strengthened using these
inequalities.
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There has been a significant rise in the consumption of on-demand services globally, ranging from ride-
hailing, grocery, food delivery to crowd-shipping and other services (Taylor 2018). Platforms or online
marketplaces which facilitate these services, act as an intermediary for matching service providers to
customers and benefit from the revenue realised (Bai et al. 2019). These firms have disrupted traditional
markets of services, transforming the global business landscape considerably. The on-demand industry
has a strong growth projection, slated to reach a valuation of close to 335 billion USD globally by 2025,
according to a report from PwC (Osztovits et al. 2015). One of the emerging segments of on-demand
services is that of ‘home services’. On-demand home service platforms like Handy, TaskRabbit, Homejoy,
Thumbtack and Urban Company match independent service providers to consumers who need some kind
of household service like cleaning, plumbing, electrical work, furniture repair etc. (Roose 2014).

While there has been considerable innovation and progress in adopting new technologies and business
models in the recent past, firms have been gradually shifting towards more sustainable ways of doing
business, guided by global regulations and policies around labour and the environment 1. Sustainable
development is succinctly defined in the Bruntland Commission (Brundtland et al. 1987) as "development
that meets the needs of the present without compromising the ability of future generations to meet their
own needs". Elkington (1997) characterises the concept of sustainability in business terms as the "triple
bottom line", by which a firm adopts a holistic approach to measure and improve environmental and
social performance besides economic performance.

We define the Home Services Assignment and Routing Problem with the Triple Bottom Line (HSARP-
TBL) for modelling the assignment and routing of service professionals to customers of an on-demand
home services platform incorporating the TBL criteria. We assign service professionals to customers based
on their preferred time slots and the availability of professionals for those slots. The goal is to minimize
the costs of penalties arising from slot time window violations (to reduce waiting time for customers and
idle time for professionals) and uncovered customers for the professionals’ visits to customers (economic).
We apply additional constraints to capture different TBL criteria by - assigning professionals based on
customer ratings and prioritising subscribed customers over non-subscribed ones for assigning higher-
rated professionals, to improve customer satisfaction (economic), imposing a limit on overall emissions
from the tours of professionals, allowing different modes of public transport as a more eco-friendly way
of commuting (environment), ensuring a minimum net earning for professionals accounting for parking
and travel costs (social).

The main contributions of this paper which distinguishes it from previous work in this area are the
following:

1. This paper proposes an optimization model for assignment and routing of on-demand home services
which addresses all three pillars of the TBL -economic, environmental, social. Contrary to previous
formulations, we consider the possibility of combining multiple transport modes in the same tour
for the environmental criteria.

2. We implement a Hybrid Genetic Search (HGS) metaheuristic for solving large instances. By apply-
ing HGS, we are able to find solutions with a better objective value compared to the MILP within
a given cut-off time for a dataset representing a real urban transport network for the city of Paris
with simulated demands.

1https://unfccc.int/process-and-meetings/the-paris-agreement
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3. We show that imposing steep emission caps can lead to lesser customers being served, adversely
impacting the primary economic performance of the platform, indicating that there is a strong
trade-off between economic and environmental performance. We show that combining public trans-
port and personal vehicles for serving customers can significantly reduce emissions (compared to
using personal vehicles only) without impacting the primary economic criteria (penalties from time
window violations).

4. For the social criteria, we find that ensuring fairness in terms of professional earning may not
negatively impact the economic performance. Also, increasing the minimum earning threshold for
service professionals cannot worsen the disparity in earnings for them.

5. We show that for some instances, environmental, social and (customer satisfaction-based) economic
criteria can be improved without worsening the primary economic objective (compared to the case
with no TBL criteria), when we impose constraints based on the TBL.

Very few papers have combined all the TBL pillars for routing and assignment of Home Services
(HS) or Home Health Care (HHC). Although Fathollahi-Fard et al. (2022) address the TBL pillars in the
context of HHC, there are many features that are unique in the HSARP-TBL model formulation that
we develop. We define a separate profit function for service professionals including total revenue based
on the service fee from each customer visit and transportation and parking costs for each visit based on
the vehicle type and customer location and ensure a minimum profit for each professional. For customer
satisfaction and retention, we use historical service ratings of professionals. We give higher priority to
subscribed customers in assigning top-rated professionals (compared to non-subscribed customers) 2. We
model the choice of transport mode for service professionals with the provision of combining different
forms of public transport in the same route (or using one’s personal vehicle throughout the route) with
a focus on controlling emissions across all professionals’ tours.

We implement the HGS algorithm introduced by Vidal et al. (2012) and adapt it to our problem
context. We introduce some additional novel operators for the initial solution generation process (before
applying the genetic algorithm) for incorporating each of the TBL pillars, using a greedy approach. Simi-
lar to Vidal et al. (2012) we compute a composite score of each solution comprising of the objective value
score and the diversity score based on the relative diversity of the solution with respect to the population
of solutions. However, the choice of transport mode adds a layer of complexity to the algorithm, making
our formulation different from previous ones. We apply the selection, crossover and mutation operators
along with some local search operators to explore neighbourhoods of promising solutions in each iteration.
Finally, we apply a refinement operator to check if the best solution from the genetic algorithm can be
further improved. We performed our computational experiments on an M1 Mac OSX System with 16
GB RAM, 3.2 GHz, 8 core processor, using CPLEX 12.10. We conducted the tests for a range of 12 to
60 customers and 3 to 15 professionals and 3 modes of transport - bus, train, car.
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The energy consumption model used in electric vehicle routing problems (EVRP) is a topic that has
different perspectives. This abstract presents computational experiments investigating the effect that
vehicle speed has on energy consumption (EC) in EVRP benchmark instances, based on EC models
found in the literature. Factors that have been shown to affect the EC of electric vehicles (EV) are
rolling resistance, air resistance, slope resistance, total mass of the EV (and people in it) and the cargo
(if any) [5, 3]. In addition to these factors, ambient temperature affects battery performance and charging
time. On top of that, air conditioning has proven to be the most demanding auxiliary load [2]. Traffic
congestion and road type affect the driving speed of the vehicles, which in turn affects the EC. There are
well established energy factor models for the EC (kWh/km), for different road grades given the average
speed of the vehicle (light duty EVs), equations 1-4 from [6] have been utilised and built upon in several
EC models in different papers, where v is the average speed.

Expressway(v) = 0.247 + 1.520
v

− 0.004v + 2.992 × 10−5v2 (1)

ArterialRoad(v) = −0.179 + 0.004v + 5.492
v

(2)

SecondaryRoad(v) = 0.21 − 0.001v + 1.531
v

(3)

Branch(v) = 0.208 − 0.002v + 1.553
v

(4)

The benchmark instances for the capacitated EVRP (E-CVRP) were developed in [4] and consist of a
subset of modified instances from the benchmark CVRP instances. There are 24 instances in total from
four different sets of benchmark CVRP instances. The algorithm used to convert the instances from
CVRP to E-CVRP is provided in [4]. In these benchmark instances, a standard EC factor is used, which
in all instances, for every road, is equal to 1. This is to say that in every instance, the vehicle uses 1 unit
of energy to traverse one unit of distance. The energy capacity Q for each benchmark instance is defined
as Q = 2d̄ where d̄ is the maximum euclidean distance between the depot and all other nodes.
It is clear from the literature that the EC of an EV depends on more factors than simply distance travelled.
Evidence has shown that speed is a significant factor in the energy consumed by an EV. With this in
mind, we investigate the impact of average speed by introducing more meaningful EC to the E-CVRP
benchmark instances. We assume three separate cases of vehicle speed to identify how this will effect the
solutions.

We use equations 1-4 and the supporting data from [6] to alter the EC factor in the benchmark instances.
From the speed distributions on each road, we find an average speed for each road type. Using this
average speed, we calculate the average EC per kilometre for each road grade. The EC per km for
each road ranges between 0.157 kWh/km and 0.262 kWh/km which is significantly less than the energy
consumption of 1 defined in the benchmark instances. With these average EC per km values for each
road grade, we assume that there is a uniform distribution of road grades (25% of roads are of each grade)
and we compute an average EC per km. The energy capacity Q of the EVs needs to be adapted to reflect
the impact on battery performance due to driving speed. To reflect this, for each instance, Q from the
benchmark instance is multiplied by this average energy consumption factor which is 0.203. Therefore,
for each of the 24 instances we now have Qmod = ECmod × Q which is a modified energy capacity for the
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vehicles in each instance.
To explore the effect that average speed has on the energy consumption in EVRP benchmark instances,
we investigated three different average speed scenarios. For the speed travelled on each road, we defined
a slow average speed, average speed and a fast average speed. EC rates for each road grade, in each
scenario were obtained using equations 1-4. The road grade of each edge was assigned based on distance
from the depot. Edges were categorised based on how far away the furthest vertex from the depot was.
We used a modified Clarke-Wright savings heuristic in [1] to solve each of our modified instances for each
scenario. The number of charging stations (CS) visited (Figure 1a), the total distance travelled (Figure
1b) and the number of extra vehicles (more than k defined in the instance) (Figure 1c) in each scenario
is compared for every instance.

(a) CS visited (b) Distance (c) Vehicles more than predefined k

Figure 1: Comparison of the charging stations (CS) visited, distance travelled and extra vehicles needed
for each instance for the three studied speed cases, and the case with no road grade (RG) or EC model

Figure 1 shows that travelling at a slow speed on average increases the number of CS visited, the number
of vehicles needed and the distance travelled in nearly all instances. This reinforces the fact that traffic
congestion plays a pivotal role in computing the EC of vehicles during trips. We predict that with a more
sophisticated road grade assignment strategy and with more factors taken into account in our EC model,
we will be able to understand more about the effect that vehicle speed has on energy consumption for
these EVRP benchmark instances. Future work will include an analysis of where the depot is located
relative to the customers and whether the road grades should reflect this.
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ABSTRACT
The heterogeneous vehicle routing problem (HVRP), a variant of
the classical vehicle routing problem (VRP), involves optimizing
route planning for vehicles with different load capacities, each de-
signed for specific tasks or constraints. Improving the HVRP model
not only enhances the solution quality and reduces solving time
but could also be useful for related extended versions such as HVRP
with time windows, pickup and delivery, multiple depots, stochas-
tic elements, and industry-specific constraints. In this paper, we
present a novel formulation for HVRP that uses a single-commodity
flow approach based on a 2-index formulation. In contrast to the
conventional single-commodity flow formulation, our approach
requires a significantly smaller number of variables. We performed
a computational experiment to show the efficiency of our model by
solving some HVRP instances and found a significant advantage.

1 INTRODUCTION
A classical vehicle routing problem (VRP) involves customers with
specified item demands to be fulfilled by a identical fleet of ve-
hicles. Here, all vehicles originate and conclude their routes at a
common point, a depot. The primary aim is to minimize the com-
bined distance covered by all vehicles while meeting the customers’
demands. VRP has been extensively studied due to its direct eco-
nomic and environmental importance in logistic and supply chain
operations. The transportation process constitutes 10% to 20% of
the ultimate cost of goods. Also, international freight transport
accounts for around one-third of the total CO2 emissions [21].
Due to this, research on VRPs has always been demanding and
growing exponentially [5]. VRP was first presented by Dantzig and
Ramser [8]. The initial stage of VRP works often focused on devel-
oping mathematical models and exact algorithms for homogeneous
fleets, serving as a foundation for later extensions. We refer reader
[7, 14, 18] for various exact and heuristics techniques under such
VRPs.

The VRP with a heterogeneous vehicle fleet, called heteroge-
neous VRP (HVRP), is a popular VRP that allows organizations to
deploy various vehicles with different capacities, each tailored to
specific tasks or constraints.

HVRP is formally described as follows: Suppose 𝐺 = (𝑉 , 𝐸) is
a complete graph where 𝑉 = {0, 1, . . . , 𝑛} is a set of nodes, and
𝐸 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ! = 𝑗} is the set of all possible edges between
nodes. Here, 0 ∈ 𝑉 represents a central depot, where all the vehicles

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-095-0 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

start and return by serving all the customers. 𝑁 = 𝑉 \{0} represents
the index set of customer location. The depot has 𝜏 number of
vehicles whose capacities are denoted by a set 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝜏 },
where 𝑡𝑖 denotes the maximum capacity 𝑖𝑡ℎ vehicle can carry. In the
case of VRP with a homogeneous fleet of vehicles, capacities will
be the same, 𝑡𝑖 = 𝑡 𝑗 ; otherwise, at least one vehicle will be different
by capacity. For each arc (𝑖, 𝑗) ∈ 𝐸, we have a transportation cost
𝑐𝑖, 𝑗 to travel from customer location 𝑖 to location 𝑗 . For simplicity,
we consider 𝑐𝑖, 𝑗 as the distance between location 𝑖 and 𝑗 . For each
𝑖 ∈ 𝑉 , we represent associated pickup quantities by 𝑝𝑖 ≥ 0. Our
objective is to determine the vehicle routes from the depot 0 to
customer points so that
• total cost be as minimum as possible
• total number of vehicles used as small as possible
• each customer is visited exactly once
• all the vehicles start from and end at the depot
• all customer demands must served by the vehicle

The pickup demand at each demand point is known before depar-
ture, and it can not be split. We assume that any vehicle can serve
any of the customers. It means the restriction that a specific sized
vehicle only serves a particular customer is not considered in our
problem. The objective is to determine the optimal vehicle routes
to pick up goods after reaching the demand point without violating
the vehicle’s maximum carrying capacities. We limit our focus to
the basic HVRP with a fixed number of vehicles, each with varying
capacity constraints.

HVRPs have received greater attention in the literature. It was
first studied in the seminal work of Golden, et al. [13] and has since
developed into an extensive field of research. Detailed surveys of
HVRP are conducted by [16] and cover the 30 years of development
since HVRP was developed by Golden, et al.. There are works by
[1, 2] that cover the solution strategy of HVRP. The model studied
in the rich-VRP literature can be found in [6].

The HVRP is NP-hard as it is a natural generalization of the trav-
elling salesman problem (TSP). Many heuristics and exact methods
have been proposed in the literature. Classical heuristics lever-
age extensions from well-established heuristics for classical VRPs
[12, 22, 23]. Tabu search-based heuristics, extensively tested and
studied, have proven effective for HVRPs [10, 25]. For branch-and-
cut and branch-price-and-cut are the main approaches that depend
on the modeling of the HVRP. We can find the work of lower bound-
ing and its variants for HVRP in [2]. [20] studies exact solving
procedures using branch-and-price-and-cut for VRP.

For exact branch-and-bound algorithms, [17, 19] have made sig-
nificant contributions; however, these algorithms tend to work
optimally only on relatively small instances. In contrast, Baldacci
and Mingozzi [4] present an exact algorithm for the HVRP, which
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generalizes bounding procedures and exact methods described for
the CVRP. They introduce novel bounding methods demonstrating
particular effectiveness when the vehicle’s fixed cost contribution
to the total cost is significant. Various valid inequalities and delayed
constraints specific to the problem are employed to speed up the
solving procedure, such as capacity cuts, comb cuts, etc. [3, 26].

Researchers have proposed various mathematical models for
the HVRP. Broadly, three variants of formulation for HVRPs are
studied.

The first is based on single-commodity flow formulation [2]. In
this, the entire vehicle fleet is considered as a single commodity. This
formulation is based on the flow of the commodity from the depot
to the customers and back to the depot. The objective is to minimize
the total cost, often a combination of travel distances, vehicle fixed
costs, and other relevant factors. The second type is the two-flow
formulation of [3]. In this formulation, it is assumed that the vehicle
types do not dominate and are ordered. The network of customers
and depots is considered symmetric. In addition, a dummy depot is
included in the modeling. Another type of formulation is the set
partitioning-based formulation. In the set partitioning formulation
of [4], given an undirected graph𝐺 (𝑉 , 𝐸), each route is assumed to
be a subset of the customer set V associated with cost, and the goal
is to select the set of routes such that the union of all routes is V,
subject to the associated VRP constraints. In this paper, we focus
on the single-flow formulation.

Two-index vehicle flow models have found application in repre-
senting basic versions of classical symmetric and asymmetric-VRP
(AVRP), including variants like the VRP with backhauls [24]. How-
ever, as the complexity of VRPs increases, these models may prove
insufficient. To solve this problem, we explicitly specify the vehicle
traveling through an arc so that more complex constraints can be
imposed on the routes. This explicit representation allows the im-
position of complicated constraints on the routes and provides a
more flexible and robust solution for solving complex VRPs.

This paper contributes a novel formulation, a 2-index commodity
flow model, which has fewer variables and constraints than the
existing formulations of VRPSPDs, which are generally modeled
as a 3-index commodity flow formulation. We discuss the existing
model for VRPSPD in Section 2. Our new model is discussed in
Section 3. In Section 4, we show computational results that highlight
the advantages of our model. Finally, we summarize our work in
Section 5 and give an outlook on future work.

2 EXISTING SINGLE-COMMODITY FLOW
MODEL FOR HVRP

We follow the model of F. Gheysens et al.. [11]. It is a 3-index
commodity flow formulation, the most widely used model, and is
also suitable for modeling other complex classes of VRP.

The parameters and sets used in the model are the same as
discussed above. For heterogeneity of vehicles, the capacity of some
vehicles is non-identical. So, for some 𝑡𝑖 , 𝑡 𝑗 ∈ 𝑇 , 𝑡𝑖 ≠ 𝑡 𝑗 . Broadly,
two categories of decision variables for the model are as follows:

• 𝑥𝑘,𝑖 𝑗 = 1 if vehicle 𝑘 moves from customer 𝑖 to 𝑗 . Otherwise,
it takes a 0 value.

• 𝑝𝑣𝑖, 𝑗 is the decision variable that indicates the total load a
vehicle carries while traversing from customer 𝑖 to customer
𝑗 for pickup of the items.

The problem is modeled as follows:

3-HVRP :=min
𝜏∑︁
𝑘=1

𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑥𝑘,𝑖 𝑗 𝑐𝑜𝑠𝑡𝑖, 𝑗

s.t.
𝜏∑︁
𝑘=1

∑︁
𝑖∈𝑉 ,𝑗≠𝑖

𝑥𝑘,𝑖 𝑗 = 1 ∀𝑗 ∈ 𝑁, (1)

∑︁
𝑗∈𝑉

𝑥𝑘,𝑖 𝑗 −
∑︁
𝑗∈𝑉

𝑥𝑘,𝑗𝑖 = 0 ∀𝑖 ∈ 𝑉 , ∀𝑘 ∈ {1 . . . , 𝜏}, (2)

∑︁
𝑖∈𝑉

𝑝𝑣𝑖, 𝑗 + 𝑝 𝑗 =
∑︁
𝑖∈𝑉

𝑝𝑣 𝑗,𝑖 ∀𝑗 ∈ 𝑁, (3)

∑︁
𝑗∈𝑁

𝑥𝑘,0𝑗 ≤ 1 ∀𝑘 ∈ {1, . . . , 𝜏}, (4)

∑︁
𝑖∈𝑁

𝑥𝑘,𝑖0 ≤ 1 ∀𝑘 ∈ {1, . . . , 𝜏}, (5)

𝑝𝑣𝑖, 𝑗 ≤
𝜏∑︁
𝑘=1

𝑡𝑘𝑥𝑘,𝑖 𝑗 ∀𝑖 ∈ 𝑉 , ∀𝑗 ∈ 𝑉 , (6)

𝑥𝑘,𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑉 , ∀𝑗 ∈ 𝑉 , ∀𝑘 ∈ {1, . . . , 𝜏}, (7)
𝑝𝑣𝑖, 𝑗 ≥ 0,∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝑉 ,

The model’s objective function is to minimize the cost associated
with the edges covered by vehicles. Constraint (1) ensures that each
customer is served exactly once by one of the vehicles. Constraint
(2) guarantees that the same vehicle enters and leaves the customer
point. Flow conservation restrictions for pickup are mentioned
in constraint (3). Constraints 4 and 5 represent flow-in and flow-
out vehicles at the depot, which limits each vehicle to be used
for a maximum of one route. Constraint (6) imposes the capacity
constraint. It is a Miller-Tucker-Zemlin constraint [9] that handles
the problem of subtour in the solution. Trivial constraints on binary
and continuous variables are imposed in (7).

The model consists of variables having three indices. Clearly,
such model requires O(𝑛2 · 𝜏) variables.

3 IMPROVED FORMULATION
3.1 Motivation
The existing model mentioned in the previous section explicitly
tracks the vehicle type to serve a given customer. So, if 𝑥𝑘,𝑖 𝑗 = 1. It
makes it very clear that the vehicle 𝑘 served (reached) the customer
(depot) 𝑗 after serving (starting) from 𝑖 .

Consider we have at least one feasible solution for a given HVRP
problem. Without loss of generality, we can consider 0 − 1 − 2 −
3 . . . , 𝑛 − 0 as a feasible path. The consequent solution obtained
from the model 3-HVRP is 𝑥1,01 = 𝑥1,12 = 𝑥1,23 = . . . = 𝑥1,𝑛0 . It
implies that vehicle 1 serves all the customers in the lexicographical
order. For other vehicle, the variables 𝑥𝑡,𝑛0,∀𝑡 ∈ {2, . . . , 𝜏}, take the
value 0. If we replace 𝑥𝑘,𝑖 𝑗 with a binary decision variable 𝑥𝑖, 𝑗 , for
the given feasible path, 𝑥0,1 = 𝑥1,2 = 𝑥2,3 = . . . = 𝑥𝑛,0. However, we
needed the information about the vehicle type which served all the
customers. If 𝑥𝑛,0 = 1 and vehicle 𝑘 serves customer 𝑛 associated
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to the feasible path, then it will serve all the remaining customers
𝑗 = {1, . . . , 𝑛 − 1} to this path.

We can generalize this idea by introducing a new binary decision
variable 𝑦 𝑗,𝑘 that represents whether the vehicle 𝑘 serves the feasi-
ble paths such that the last visited customer is 𝑗 . Clearly, 𝑦 𝑗,𝑘 = 1
if 𝑥 𝑗,0 is 1 and vehicle number 𝑘 is used to carry the load associ-
ated at customer points 𝑗 ∈ 𝐽 . Where 𝐽 is the set of all last visited
customer point by any vehicles. That is, 𝐽 = { 𝑗 ∈ 𝑁 | 𝑥 𝑗,0 = 1}. So,∑𝜏
𝑘=1 𝑦 𝑗,𝑘 = 1, 𝑗 ∈ 𝐽 . Since we do not have any information about

𝐽 before computing the model, we can rewrite it as -

𝜏∑︁
𝑘=1

𝑦 𝑗,𝑘 = 𝑥 𝑗,0, ∀𝑗 ∈ 𝑁 . (8)

Equation 8 ensures that if the last visited customer is not 𝑗 then
𝑦 𝑗,𝑘 = 1 for any 𝑘 ∈ {1, . . . , 𝜏}. One important condition related to
𝑦 𝑗,𝑘 is the following:

∑︁
𝑗∈𝑁

𝑦 𝑗,𝑘 ≤ 1, ∀𝑘 ∈ {1, . . . , 𝜏}. (9)

This ensures that a vehicle 𝑘 ∈ {1, . . . , 𝜏} can not be connected to
more than one feasible path.

Now we can associate the variables 𝑦 𝑗,𝑘 and 𝑝𝑣 𝑗,0 that form the
maximum carrying capacity of vehicle 𝑘 ,

𝑝𝑣𝑎𝑟𝑖,0 𝑦𝑖,𝑘 ≤ 𝑡𝑘 , ∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ {1, . . . , 𝜏}. (10)

Equation (10) consists nonlinear terms. We can linearlize the
product of binary and continuous variables 𝑧 = 𝑝𝑣𝑎𝑟𝑖,0 𝑦𝑖,𝑘 ≤ 𝑡𝑘 as
follows:

𝑧 ≤ 𝑦𝑖,𝑘𝑀,
𝑧 ≤ 𝑝𝑣𝑎𝑟𝑖,0 ,
𝑧 ≥ 𝑝𝑣𝑎𝑟𝑖,0 + (1 − 𝑦𝑖,𝑘 )𝑀,
0 ≤ 𝑧 ≤ 𝑡𝑘 . (11)

Here𝑀 is a suitable large number. Since most of the optimization
solvers also handle logical constraints, an alternative to the systems
of Equations (11), we can have the following constraints:

𝑦𝑖,𝑘 = 1 =⇒ 𝑝𝑣𝑎𝑟𝑖,0 ≤ 𝑡𝑘 . (12)

3.2 Model
Using the above constraints and other HVRP constraints, we form
the 2-index formulation as follows:

2-HVRP :=min
𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑥𝑖, 𝑗 𝑐𝑜𝑠𝑡𝑖, 𝑗

s.t.
∑︁

𝑖∈𝑉 ,𝑗≠𝑖
𝑥𝑖, 𝑗 = 1 ∀𝑗 ∈ 𝑁, (13)

∑︁
𝑗∈𝑉 ,𝑖≠𝑗

𝑥𝑖, 𝑗 = 1 ∀𝑖 ∈ 𝑁, (14)

∑︁
𝑖∈𝑉

𝑝𝑣𝑖, 𝑗 + 𝑝 𝑗 =
∑︁
𝐼 ∈𝑉

𝑝𝑣 𝑗,𝑖 ∀𝑗 ∈ 𝑁, (15)

∑︁
𝑖∈𝑁

𝑝𝑣0,𝑖 = 0, (16)

∑︁
𝑖∈𝑁

𝑝𝑣𝑖,0 =
∑︁
𝑗∈𝑁

𝑝 𝑗 , (17)

𝜏∑︁
𝑘=1

𝑦 𝑗,𝑘 = 𝑥 𝑗,0, ∀𝑗 ∈ 𝑁 (18)

∑︁
𝑗∈𝑁

𝑦 𝑗,𝑘 ≤ 1, ∀𝑘 ∈ {1, . . . , 𝜏}, (19)

𝑦𝑖,𝑘 = 1 =⇒ 𝑝𝑣𝑎𝑟𝑖,0 ≤ 𝑡𝑘 , ∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ {1, . . . , 𝜏},
(20)

𝑥𝑖, 𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑉 , ∀𝑗 ∈ 𝑉 , (21)
𝑝𝑣𝑖, 𝑗 ≥ 0,∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝑉 ,
𝑦𝑖,𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑁,∀𝑘 ∈ {1, . . . , 𝜏}.

Here, similar to the model 3-HVRP , the objective function in
the model is to minimize the cost associated with the edges cov-
ered by vehicles. The indegree and outdegree constraints (13) and
(14) ensure that exactly one entry and exit is allowed at each cus-
tomer. Constraint (15) guarantees flow conservation restrictions
for pickup. Equation (16) and (17) make sure that vehicles start
empty from the depot and return with all the picked-up items to
the depot. The details of constraints (18), (19) and (20) are provided
in Section 3.1. Trivial constraints on binary and continuous vari-
ables are imposed in (21). Note that the model consists of variables
having only two indices - such a model requires O(𝑛2) variables
and O(𝑛2) constraints.

The model can be helpful to other classes of VRP problems with
more added constraints - we can have a similar formulation for
HVRP with pickup and load. Since time-window-based restrictions
in HVRPs do not require any variable related to the vehicle’s capac-
ity, our model can adapt to such time-window-based problems.

4 COMPUTATIONAL EXPERIMENTS
In this section, we give empirical evidence of the effectiveness of
our 2-index-based model (2-HVRP ) in some HVRP instances and
provide computational details of them. We compare the perfor-
mance of our model with that of the 3-HVRP by solving it with the
22.1.1.0 version of CPLEX, one of the fastest optimization solvers.
Both models are coded in Python (version 3.8), utilizing the CPLEX
Python API. This Python package within CPLEX facilitates access
to the Callable Library from the Python programming language.

The hardware used for the computation is a Mac OS M2 chip,
an 8-core CPU supporting a 10-core GPU with a 3.49 GHz CPU. To
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avoid multiple processes sharing common resources, we run one
job at a time with the default settings of CPLEX API.

We generate 18 test instances for our experiment, each with
different customers and vehicles. The locations of the vehicles and
customers are two-dimensional coordinate points (𝑥,𝑦) that are
randomly generated, where x and y are from a uniform distribution
such that 𝑥∼𝑈 [𝑎1, 𝑎2] and 𝑦∼𝑈 [𝑏1, 𝑏2].

It should be noted that there are HVRP instances that have
already been well studied and tested [15]. Our experiments focused
on smaller data sets. This was a deliberate choice, as our current
work does not focus on refining solution strategies, but aims to
motivate readers for the effectiveness of using an improved model.
Consequently, we applied our model to the optimization solver
avoiding delving into developing an exact method for its solution.

The vehicle’s capacity is chosen randomly and is uniformly dis-
tributed between 𝑞1 to 𝑞2. The value of items to be picked up by
vehicle at the customer location is also randomly generated, uni-
formly distributed between 𝑝1 to 𝑝2. Selection of the number of
vehicles should ensure sufficient supply to serve all the customers.
The simple approach to estimate this value is always to keep the
number of vehicles more than the sum of total items to be picked
divided by the average capacity of a vehicle.

Our data set is generated with the following suitable values:
𝑎1 = 𝑏1 = 0, 𝑎2 = 200, 𝑏2 = 100, 𝑝1 = 1, 𝑝2 = 5, 𝑞1 = 5 and 𝑞2 = 10.
Out of 18 test instances, we show the detailed specification of the
first 4 instances in Tables 1 and 2. In Table 1, for each instances,
we list 𝑛, number of customers, 𝜏 , maximum number of vehicles
available, 𝑝𝑖 , 𝑖 = 1, . . . , 𝑛, pickup items at each customer locations
, and 𝑡 𝑗 , 𝑗 = 1, . . . , 𝜏 , the maximum carrying capacities of each
vehicle. Note that the capacity of vehicles and items to be picked
at the customer ends have the same units. Each 𝑛𝑖 , 𝑖 = 1, . . . , 𝑛 in
Table 2 is the 𝑥−𝑦 coordinate that represents customer locations. For
our experiments, we consider 𝑐𝑜𝑠𝑡𝑖, 𝑗 =



𝑛𝑖 − 𝑛 𝑗 

2, the Euclidean
distance between customers 𝑖 and 𝑗 . The remaining test instances
consist of the following number of customer 𝑛 and the number of
vehicles 𝜏 :

(𝑛, 𝜏) =




(8, 4), if 𝐼 = 𝐼5, 𝐼6, 𝐼7, 𝐼8,
(10, 6), if 𝐼 = 𝐼9, 𝐼10, 𝐼11, 𝐼12,
(15, 8), if 𝐼 = 𝐼13, 𝐼14, 𝐼15, 𝐼16,
(40, 20), if 𝐼 = 𝐼17, 𝐼18.

All test instances (in CSV)and models (in .LP format) are available
on https://github.com/devanandR/HVRP.git.

Table 3 compares the performance of our 2-HVRP to the existing
3-HVRP . For both the models, we report optimal objective value,
deterministic solving (wall) time taken by Cplex, and the number
of vehicles used by the obtained optimal route, denoted by ‘objval’,
‘time’, and ‘v-used’, respectively. The unit for the time used is in
seconds. We set the time limit of 600 seconds. The last column,
‘improvement’, compares the solving times. The first comparison,
‘%’, reports the solving time benefit of using our method in terms of
percentages. The second performance, ‘times’, measures how often
our models are faster than the existing method. Compared to a
3-index-based model, our approach takes almost negligible time for
small-sized instances. For a better picture of the effectiveness of our
method, we refer to Figure 1. We use a log scale to show the solving

time to illustrate the comparison. The blue column represents our
model and the red column represents the existing model. The av-
erage time CPLEX takes to solve all the first 16 instances modeled
as 2-HVRP is 0.56 seconds, much less than that of 3-HVRP , which
takes 58 seconds.

The last two problem instances, I17 and I18, are chosen to be
a difficult problem. Both the models hit the maximum time limit
for I17 and I18. Interestingly, our model for such instances found
a feasible integer solution with less than a 10 % optimality gap.
However, the existing model could not find a feasible solution for
such instances.

Table 1: Vehicles Capacities & Customer Demands

𝐼 𝑛 𝜏 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑡1 𝑡2 𝑡3
𝐼1 5 3 1 1 2 2 1 6 9 7
𝐼2 5 3 2 2 4 4 3 5 7 7
𝐼3 5 3 4 1 2 1 3 8 9 9
𝐼4 5 3 1 2 2 3 3 9 6 8

Table 2: Customer Locations (the x-y-coordinate) for the In-
stances in Table 1

I depot n1 n2 n3 n4 n5

I1 x 7.946 199.811 122.772 24.721 125.448 167.456
y 76.594 45.897 97.952 99.052 3.214 13.750

I2 x 192.64 140.37 170.73 82.36 114.75 59.00
y 93.47 33.29 35.20 19.75 90.67 0.16

I3 x 88.51 134.67 148.54 126.48 180.12 94.98
y 60.07 71.64 51.23 74.93 82.48 78.19

I4 x 62.95 141.06 15.64 113.02 64.45 17.54
y 76.35 82.10 79.78 49.71 85.23 35.42

Table 3: Computational Summary of the Performance of our
Model, 2-HVRP Compared to 3-HVRP

I 3-indexModel 2-index improvement
objval time v-used objval time v-used % times

I1 446.51 0.18 1 446.51 0.016 1 91.11 11.3
I2 654.37 0.023 3 654.37 0.02 3 13.04 1.2
I3 239.91 0.05 2 239.91 0.017 2 66.00 2.9
I4 327.52 0.1 2 327.52 0.022 2 78.00 4.5
I5 632.91 0.19 3 632.91 0.04 3 78.95 4.8
I6 353.16 0.31 3 353.16 0.076 3 75.48 4.1
I7 489.84 0.13 3 489.84 0.036 3 72.31 3.6
I8 431.13 0.15 3 431.13 0.06 3 60.00 2.5
I9 693.81 0.62 4 693.81 0.33 4 46.77 1.9
I10 665.15 1.32 4 665.15 0.3 4 77.27 4.4
I11 692.5 0.26 3 692.5 0.04 3 84.62 6.5
I12 618.5 0.66 3 618.52 0.12 3 81.82 5.5
I13 987.065 392.43 5 987.065 3.72 5 99.05 105.5
I14 818.7 45.5 5 818.7 0.31 5 99.32 146.8
I15 1319.46 6.46 5 1319.46 0.47 5 92.72 13.7
I16 1168.76 493.16 5 1168.76 3.45 5 99.30 142.9
I17 unsolved timeout 2659.48 (9.88%) timeout 15 - -
I18 unsolved timeout 2988(8.7%) timeout 14 - -
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5 CONCLUSION AND FUTUREWORK
In this paper, we have presented a 2-index-based single-commodity
flow model for the heterogeneous vehicle routing problem (HVRP).
Our model has been shown to be a compelling alternative to the
existing 3-index-based single-commodity flow model, as it requires
significantly fewer variables. This reduction in complexity con-
tributes to a computationally more efficient technique for solving
the problem.When solving themodels with CPLEX, an optimization
solver, we saw remarkable speedups for smaller problem instances
with up to 15 customers. In addition, for two larger instances with
40 customers, our model also showed impressive result by pro-
viding feasible integer solutions with a gap of less than 10% for
instances where the existing model struggled to reach even a sin-
gle integer feasible solution. Notably, our model can be extended
to other classes of problems, including HVRP with time window
constraints, pickup and delivery considerations, and other related
HVRP extensions.

We have only tried to model the problem and focus on the basic
version of the HVRP. Other complex constraints, such as HVRPwith
multiple depots, HVRP where some customers are only allowed
to use certain types of vehicles, and related complex HVRP, are
something that we are working towards.

The current work focuses only on modeling the problem. Our
immediate research direction is to perform extensive computational
experiments by exploiting valid inequalities and delayed constraints
to solve large instances.

Figure 1: A Column Chart Comparing the Solving Time
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ABSTRACT
Tactical traffic engineering solutions are a must to adapt traffic
steering when unexpected congestions occur. While centralized
solutions are already available to solve congestion issues, they can
be too slow and not suitable for some deployment scenarios. To
address this issue, a distributed congestion mitigation mechanism
that leverages Segment Routing (SR) to offload traffic away from
congested links over alternative paths has been proposed. However,
to accurately re-route traffic while not inducing other congestions,
it requires fresh information about link loads inside alternative
paths. In this paper, we propose to rely on the computation of addi-
tional paths, called "monitoring paths", that can be used to collect
link loads efficiently. We investigate the associated optimization
problem to decrease the number of paths used for monitoring. Also,
thanks to Bilevel optimization, we show that the load information
of several links can be recovered without monitoring. Results show
that the overhead can be drastically reduced.

KEYWORDS
OSPF, Shortest-Path, Monitoring, Optimization, Segment-Routing,
Path-Tracing, Network Telemetry, Bilevel optimization.

1 INTRODUCTION
As IP networks are continuously increasing in traffic, scale and
complexity, service providers must carefully plan and design their
networks to anticipate network evolution, e.g. traffic or failure
scenarios, and meet custom requirements, e.g. in terms of Quality
of Service (QoS) or routing requirements. In order to keep the
network management as simple as possible, most of the traffic is
routed across the network following the shortest path given by the
Open Shortest Path First protocol (OSPF) [8], a routing protocol
that works by flooding Link State Advertisement (LSA) information
throughout the network. This information includes the cost of each
link, its capacity, as well as some performance metrics about the
link utilization. Routers use these metrics to compute and update
their routing strategies.

However, in the case of unexpected link failures, the original
planning may no longer hold, as traffic may be redirected to the
post-convergence paths, leading to excessive use of some links, i.e.,
to congestions. This calls for fast reaction mechanisms to mitigate
these congestions in less than 50 ms. As the interaction with the
centralized controller is not suitable, due to the slow communication
with devices, it is preferable to take decisions locally at node level.
In [1], the authors propose a distributed congestion mitigation (CM)

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-095-0 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

mechanism using Segment Routing (SR) to load balance traffic from
a congested link to different alternative paths, as soon as a router
detects congestion over an outgoing interface. However, if the load
balancing weights are not properly tuned, the rerouted traffic can
introduce new congestion in other parts of the network. Therefore,
routers need to get accurate loads of the links in each alternative
path, to decide how much traffic to reroute over them.

A solution to get accurate information can be provided by in-
network telemetry [18], which aims to collect data from devices
at high speed and in real-time. In particular, In-band Network-
wide Telemetry (INT), or In-situ Operations, Administration, and
Maintenance (IOAM) [2, 12, 19] embeds the telemetry information
in the header of user packets or probe packets [11] to perform
end-to-end or hop-by-hop measurements. To collect link loads over
alternative paths, we can use Path Tracing (SR-PT) [9, 14] or iFit [15],
i.e., two candidate solutions to provide a record of end-to-end delay,
per-hop delay, and load on each egress interface along the packet
delivery path.

Unfortunately, the number of alternative paths may be very high
as routers maintain 𝑘 alternative paths per destination and outgoing
link (potentially congested). As explained in [5], path-based mea-
surements are prohibitive due to the massive number of existing
paths inside a network. First, probing packets have a maximum size
(e.g. 1500 B), and therefore, if the path to be monitored is too long,
it is not possible to collect telemetry data within a single packet.
Second, as paths often overlap, a significant amount of collected
information is redundant. This calls for the design of a new mecha-
nism to improve the efficiency of alternative paths monitoring so
that a more accurate reaction can be taken, avoiding introducing
cascade congestions in remote links in the network.

In this paper, we investigate the computation of a small additional
subset of paths, referred to as monitoring paths. These paths, which
are deployed by each node, are used to collect remote link load
information over the links used by its alternative paths (i.e., for
all the destinations). The number of monitoring paths must be (i)
much smaller than the number of alternative paths, and (ii) allow
monitoring of all links in the alternative paths. In addition, our
solution allows using some alternative paths for monitoring. As
they are already deployed inside the routing table of a node, they
can be immediately used at congestion time for faster reaction. In
order to further reduce the monitoring overhead, we also show that
it is possible to skip the monitoring of some links, without any loss
of information.

In this paper, we provide the following contribution:

• We introduce a new set of paths, referred to as monitoring
paths, used for hop-by-hop measurements.
• We formulate the monitoring paths computation problem
using an Integer Linear Programming (ILP) model.
• We show that the monitoring paths computation problem is
NP-Hard.
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• We exploit Bilevel optimization to design partial monitoring
paths, still guaranteeing full measurement.
• We perform extensive computational experiments to evalu-
ate the performance of our algorithm compared to a "Naive
approach" that consists in monitoring all alternative paths.
We show that our solution decreases, the average number of
paths for monitoring by up to 68% and the average number
of monitored links by up to 71%.

The paper is organized as follows. In Sec. 2, we introduce the
state of the art, in Sec. 3, we detail the considered use case. In
Sec. 4, we provide a mathematical model for the computation of
the monitoring paths. In Sec. 5 we show how a partial monitoring
is enough to recover the load of all links in the alternative paths.
In Sec. 6, we show the efficiency of our algorithm. Finally, Sec. 7
concludes this paper.

2 RELATEDWORK
Several works in the literature have proposed routing optimization
to mitigate congestion. In very recent works, such as [3, 4], the
authors suggest leveraging mid-point SR optimization to mitigate
congestion in the network. This approach is based on a central-
ized controller to compute alternative SR policies for congestion
mitigation, which may not be desirable for scalability, fault toler-
ance, or commercial reasons. In [1], authors proposed a distributed
mechanism based on SR. When a router detects congestion on a
link, a portion of the traffic can be automatically offloaded and load
balanced over a set of alternative paths using UCMP (Unequal Cost
Multi Paths). The goal is to select lightly loaded paths to reroute
a maximum of traffic, mitigate the congestion, and avoid creat-
ing new congestion elsewhere in the network. Our paper provides
a distributed solution to optimize the collection of link loads, in
real-time, over alternative paths for this type of mechanism.

Several works in the literature have proposed solutions for the
computation of monitoring paths computations. In [16], authors
develop a heuristic called "Graph Partitioned INT" so that a cen-
tralized controller can organize path measurements to cover all
the nodes in the network, guarantee the freshness of telemetry
information, and minimize redundancy. In [13], authors developed
an algorithm to generate, at the controller, non-overlapped INT
paths that cover the entire network with a minimum path number.
In [5], authors investigate the computations of probing cycles that
collect telemetry information over time employing a MILP model
and a mathematical-based heuristic.
Our paper proposes a distributed mechanism to organize the col-
lection of link data from a given router. In addition, it leverages as
many as possible alternative paths for a smooth transition when
congestions happen and further reduces the overhead with the
partial collection.

3 USE CASE: MONITORING FOR CONGESTION
MITIGATION

Typical service provider networks are configured to support reliabil-
ity (up to 1-link failure) and QoS satisfaction (low MLU). As shown
in Fig. 1, the backbone network is composed of Provider (P) nodes,
i.e., nodes belonging to the same Internet Service Provider (ISP).
The backbone network receives traffic from different sites, which

Figure 1: Example of a network with "CE" nodes attached to
sites, "P" nodes in the ISP backbone, and "PE" nodes inter-
connecting "P" and "CE" nodes.
are interconnected to the service provider network via Customer
Edge (CE) routers. The "PE" nodes interconnecting "P" and "CE"
nodes are referred to as Provider Edge (PE) routers. In this backbone
network, the "PE" nodes act as both sources and destinations of
traffic aggregates. In order to keep the routing plane as simple as
possible, flows follow the OSPF path, i.e., the shortest path between
each pair of "PE" nodes. We point out that, in this paper, we only
consider Segment Routing (SR) Best Effort (BE) traffic following
the OSPF shortest path.

In the case of a link failure, the node detecting the failure broad-
casts an LSA message to all the other links in the network to notify
them of the network change. Each node independently computes a
new OSPF shortest path tree to route the traffic avoiding the failed
link. However, after that the network has reconverged, it may no
longer guarantee low MLU and congestion, i.e. links whose load
exceeds a given threshold, may appear. For this reason, it is neces-
sary to implement efficient congestion mitigation mechanisms that
locally react to congestions in less than 50ms, i.e. without requiring
any interaction with an external controller.

A reference solution, that we will consider throughout this pa-
per, is presented in [1], where the authors present a congestion
mitigation mechanism that load balances traffic away from the
link whose load is above 70%. The traffic is rerouted over 𝑘 alter-
native paths that allow reaching the original destination. In this
preliminary work, the authors only consider the link load of the
congested interface. However, efficient congestion mitigation re-
quires the knowledge of the load of all the links in the alternative
paths, in order to avoid introducing remote congestions due to the
unawareness of remote link loads.

As the reception of an LSA denotes that a network change has
occurred, each node that receives an LSA message knows that
congestion may happen. For this reason, after that it has updated
its routing tables and converged to the new OSPF tree, it can deploy
some extra paths, referred to as monitoring paths. As for SR-PT
paths, the node sends probe packets through the monitoring paths
to collect statistics about the load of all the links that belong to its
alternative paths towards each destination. In this way, the node
can collect all the information that it needs to make better load-
balancing decisions in the case of congestion. In order to reduce the
number of additional monitoring paths, some alternative paths can
be chosen for monitoring purposes. As the failing link is not known
a priori, the monitoring paths for each failure can be pre-computed
offline, stored in the devices, and activated only when needed.

Once congestion mitigation is initiated, the node calculates the
split ratio for each alternative path by considering both the local and
the remote link loads. We neglect this computation as out of scope
for this paper. In order to reroute traffic, an explicit Segment Routing
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ID (SID) list is encapsulated in the header of the packets forwarded
over alternative paths. This traffic, which is called ”engineered”, is
no longer following the OSPF shortest path.

As soon as the congestion issue is resolved (i.e., the utilization
of the egress link falls below a given threshold, i.e. 30%), the node
stops the mitigation process and uninstalls the monitoring paths.

4 MONITORING PATHS COMPUTATION
The network can be modelled as a graph 𝐺 = (𝑉 ,𝐴), where 𝑉 is
the set of nodes and 𝐴 is the set of arcs (links). Nodes of 𝑅 ⊂ 𝑉
represent the set of "PE" nodes that generate the traffic in the
backbone network, as they receive traffic from the "CE" nodes. The
graph of "P" nodes, i.e., restricted to nodes of 𝑉 \ 𝑅, corresponds to
the backbone network.

The traffic, between two nodes 𝑢, 𝑣 ∈ 𝑉 in the network, follows
the shortest path with respect to OSPF weights. This path is called,
OSPF path, denoted by 𝑝𝑣𝑢 . Let 𝑆 be the set of all shortest paths
between every pair of "PE" nodes in 𝑅. Let 𝐴 be the set of links
belonging to OSPF paths, i.e., 𝐴 =

⋃
𝑢,𝑣∈𝑉

𝑝𝑣𝑢 . In the following, we

denote by 𝛿+ (𝑣) ⊆ 𝐴 (resp. 𝛿− (𝑣)) the outgoing (resp. ingress) links
of 𝑣 ∈ 𝑉 . Let 𝛿 (𝑣) = 𝛿+ (𝑣) ∪𝛿− (𝑣). In this paper, we investigate the
monitoring paths computation problem from the point of view of
one arbitrary node 𝑢∗ ∈ 𝑉 . For a "PE" node 𝑟 ∈ 𝑅 \ {𝑢∗} and every
arc 𝑎 ∈ 𝛿 (𝑢∗), let 𝑃𝑟𝑎 be the set of 𝑘 ∈ N alternative paths between
𝑢∗ and 𝑟 avoiding 𝑎. These paths are designed by the network
operator (not necessarily shortest-paths) to reroute traffic in case
of congestion. Let 𝑃𝑟 =

⋃
𝑎∈𝛿 (𝑢∗ )

𝑃𝑟𝑎 be the set of all alternative paths

to destination 𝑟 and 𝐴′ =
⋃
𝑟 ∈𝑅

⋃
𝑝∈𝑃𝑟

𝑝 be the set of all links in the

alternative paths.

4.1 Problem definition
The monitoring paths computation problem consists in computing
at most 𝑞 ∈ N paths between 𝑢∗ and "PE" nodes 𝑅 such that:
• each link in the alternative paths, nonadjacent to 𝑢∗ (links
of 𝐴′ \ 𝛿 (𝑢∗)), is monitored,
• the length (number of hops) of each monitoring path is at
most 𝐿max ∈ N,

under the following multi-objective function:
1) minimize the number of monitoring paths,
2) maximize the number of alternative paths used for monitoring,
3) minimize the total monitoring paths cost. The link costs may be

used to prioritize some links for monitoring or to minimize the
number of hops in the paths.

We consider a weighted sum of objective functions, by assigning
a weight 𝑤1 ∈ R+ to objective 1), 𝑤𝑟𝑝 ∈ R+ to objective 2) and
𝑤𝑎 in objective 3) for every link 𝑎 ∈ 𝐴. Let 𝑄 = {1, . . . , 𝑞}. Note
that "Paths used for monitoring" represent the union of monitoring
paths and a subset of alternative paths used for monitoring.

4.2 Complexity
Theorem 4.2.1. The monitoring paths computation problem is

NP-hard.
Proof. We propose a polynomial reduction from the Hamilton-

ian path problem, known to be NP-complete [10], that consists,

Figure 2: Graph transformation

given a graph 𝐺 = (𝑉 ,𝐴), in computing a path, between a source 𝑠
and a destination 𝑡 , in 𝐺 crossing all vertices in 𝑉 \ {𝑠, 𝑡} exactly
once. We construct a graph 𝐺 ′ = (𝑉 ′, 𝐴′) from 𝐺 , as follows:
• replace each node 𝑣 ∈ 𝑉 \ {𝑠} by two nodes 𝑣 ′ and 𝑣 ′′ con-
nected by a link (𝑣 ′, 𝑣 ′′) of weight 0,
• for each link (𝑢, 𝑣) ∈ 𝐴, such that 𝑢 ∈ 𝑉 \ {𝑠} and 𝑣 ∈ 𝑉 \ {𝑠}
add a link (𝑢′′, 𝑣 ′) with𝑤 (𝑢′′,𝑣′ ) = 1,
• for each 𝑣 ∈ 𝑉 \ {𝑠} add a link (𝑠, 𝑣 ′) of weight 𝑤 (𝑠,𝑣′ ) =
|𝐴| + |𝑉 |, if (𝑠, 𝑣) ∉ 𝐴 and𝑤 (𝑠,𝑣′ ) = 0, otherwise.

Let 𝑅 = {𝑣 ′′ | ∀𝑣 ∈ 𝑉 \ {𝑠}} be the set of "PE" nodes. For all 𝑟 ∈ 𝑅,
let 𝑝𝑟 = {(𝑠, 𝑟 ′), (𝑟 ′, 𝑟 ′′)} be an alternative path. Consider weight
𝑤𝑟𝑝 = |𝐴| + |𝑉 | and 𝑤1 = 0. See Fig. 2. For 𝑞 = 1, solving the
monitoring paths computation problem in 𝐺 ′ allows us to solve
the Hamiltonian path problem in 𝐺 . Indeed, since 𝛿+ (𝑡) = ∅, the
monitoring path crosses every link (𝑟 ′, 𝑟 ′′) ∀𝑟 ∈ 𝑉 \ {𝑠}, and the
result follows. □

4.3 Mathematical model
Let 𝑧𝑟𝑝 ∈ {0, 1} be a binary variable that equals 1 if alternative path
𝑝 ∈ 𝑃𝑟 between 𝑢∗ ∈ 𝑉 and 𝑟 ∈ 𝑅 is used for monitoring and 0
otherwise. Let 𝑦𝑖 ∈ {0, 1} be a binary variable that equals 1 if mon-
itoring path 𝑖 ∈ 𝑄 is considered in the solution, and 0 otherwise.
Let 𝑥𝑖𝑎 be a binary variable that equals 1 if link 𝑎 ∈ 𝐴 belongs to
monitoring path 𝑖 ∈ 𝑄 and 0 otherwise.

The monitoring paths computation problem is equivalent to the
following Integer Linear Program (MPCP):

min
∑︁
𝑖∈𝑄
(𝑤1𝑦𝑖 +

∑︁
𝑎∈𝐴

𝑤𝑎𝑥
𝑖
𝑎 ) −

∑︁
𝑟 ∈𝑅

∑︁
𝑝∈𝑃𝑟

𝑤𝑟𝑝𝑧
𝑟
𝑝 (1)

∑︁
𝑎∈𝛿+ (𝑣)

𝑥𝑖𝑎 −
∑︁

𝑎∈𝛿− (𝑣)
𝑥𝑖𝑎 =



𝑦𝑖 if 𝑣 = 𝑢∗,
−𝑦𝑖 if 𝑣 = 𝑟 ∗,
0 otherwise.

∀𝑖 ∈ 𝑄, 𝑣 ∈ 𝑉 , (2)

∑︁
𝑎∈𝐴 [𝑊 ]

𝑥𝑖𝑎 ≤ |𝑊 | − 1 ∀𝑊 ⊆ 𝑉 , ∀𝑖 ∈ 𝑄, (3)

∑︁
𝑖∈𝑄

𝑥𝑖𝑎 +
∑︁
𝑟 ∈𝑅

∑︁
𝑝∈𝑃𝑟 |𝑎∈𝑝

𝑧𝑟𝑝 ≥ 1 ∀𝑎 ∈ 𝐴′ \ 𝛿 (𝑢∗ ), (4)

∑︁
𝑎∈𝐴

𝑥𝑖𝑎 ≤ 𝐿max ∀𝑖 ∈ 𝑄. (5)

where 𝑟∗ is a dummy node connected to each "PE" node 𝑟 ∈ 𝑅 by
the following dummy link (𝑟, 𝑟∗). Constraints (2)-(3) represent the
flow conservation equalities and sub-tour elimination inequalities.
They allow computing the monitoring paths. Constraints (4) en-
sure monitoring every link in the alternative path by at least one
path. Note that, links adjacent to 𝑢∗ can be unmonitored. Finally,
Constraints (5) bound the number of hops in the monitoring paths.
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5 PARTIAL LINKS MONITORING
In this section, we show that it is possible to get the measurements
of all links in the alternative paths without monitoring all of them.
This allows us to decrease the number of paths used for monitoring
and the number of links to be monitored. For example, consider the
graph in Fig. 3 where the weights on the links represent the link
cost. The graph contains 8 nodes including 3 "PE" nodes (in blue).

Figure 3: Network with 8 nodes. Nodes 5, 6 and 7 represent
the "PE" nodes. Weights or links represent the TE Costs.

Fig. 4 represents the shortest paths between "PE" nodes. In this
example, we consider node 3 for the congestion mitigation. Node
3 is aware of the link loads of all its ingress/outgoing links. Fig. 5
displays two alternative paths between node 3 for every "PE" node.

Figure 4: Shortest path trees between "PE" nodes.

Finally, Fig. 6 shows two monitoring paths, the first one is be-
tween nodes 3 and 6 and the second one is between 3 and 7.

Figure 5: 2 Alternative paths between node 3 and each "PE".

Figure 6: Monitoring paths (in green) to get loads of all links
in the alternative paths given in Fig. 5 (in red).

It is easy to see that the number of monitoring paths is smaller
than the number of alternative paths. Moreover, the number of links

in the monitoring paths is smaller than those of the alternative
paths. Although the monitoring paths do not cover all links in
the alternative paths, they are enough to get the measurement of
all links in the alternative paths. As links (2, 1), (2, 5), (4, 2) do not
appear in the OSPF paths, they cannot route any traffic. Hence, they
are not monitored even if they belong to alternative paths. Links
(1, 0), (0, 5) are not monitored even if they appear in the alternative
and OSPF paths. The traffic over these two links can be deduced
thanks to the measurements of links (6, 1), (7, 1). Indeed, since link
(2, 1) belongs to no OSPF path, and all OSPF paths crossing (1, 0)
do not cross (0, 6) the traffic load over links (1, 0) and (0, 5) equals
the loads sum of (6, 1) and (7, 1).
5.1 Mathematical model
The partial monitoring paths computation problem (PMPCP) is
a variant of MPCP, described in the previous section. In contrast
with MPCP, in this version, we relax Constraints (4) forcing the
monitoring paths to cross over all links in the alternative paths.
The monitoring on a link in the alternative path can be skipped
if 1) it belongs to no OSPF path, or, 2) it is able to recover its link
load only based on the monitoring of other links. We refer to the
second type links as the "Recovered links". For that, we need to
ensure that all traffic matrices satisfying the loads on the monitored
links, give the same load on every Recovered link. The PMPCP can,
then, be tackled as a Bilevel optimization problem [17], where the
leader selects the links to monitor and the follower tries to find
two different traffic matrices giving the same load on monitored
links (decided by the leader) but with different loads on at least
one recovered link. From MPCP, we consider additional decision
variables for the leader as follows: let 𝑡𝑎 ∈ {0, 1} be a variable that
equals 1 if link 𝑎 ∈ 𝐴 is monitored and 0 otherwise. Moreover, we
consider further variables for the follower: let 𝑞𝑎 ∈ R+ be the load
difference between the two traffic matrices on link 𝑎 ∈ 𝐴. And,
let 𝑥𝑖𝑝 ∈ R+ be the amount of traffic over the OSPF path 𝑝 ∈ 𝑆
associated with traffic matrix 𝑖 = 1, 2.

The partial monitoring paths computation problem is equivalent
to the following Bilevel mathematical model (PMPCP)

min
∑︁
𝑎∈𝐴

𝑤0𝑡𝑎 +
∑︁
𝑖∈𝑄
(𝑤1𝑦𝑖 +

∑︁
𝑎∈𝐴

𝑤𝑎𝑥
𝑖
𝑎 ) −

∑︁
𝑟 ∈𝑅

∑︁
𝑝∈𝑃𝑟

𝑤𝑟𝑝𝑧
𝑟
𝑝 (6)

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2), (3), (5)

𝑥𝑖𝑎 ≤ 𝑡𝑎 ∀𝑎 ∈ 𝐴, 𝑖 ∈ 𝑄, (7)
𝑧𝑟𝑝 ≤ 𝑡𝑎 ∀𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃𝑟 , 𝑎 ∈ 𝑝, (8)

𝑡𝑎 ≤
∑︁
𝑖∈𝑄

𝑥𝑖𝑎 +
∑︁
𝑟 ∈𝑅

∑︁
𝑝∈𝑃𝑟 |𝑎∈𝑝

𝑧𝑟𝑝 ∀𝑎 ∈ 𝐴, (9)

𝜗 (𝑡 ) ≤ 0, (10)

where 𝜗 (𝑡 ) = max
∑︁

𝑎∈𝐴′∩𝐴̄
𝑞𝑎 (11)

𝛼𝑎 : 𝑡𝑎
∑︁

𝑝∈𝑆∋𝑎
𝑥1
𝑝 = 𝑡𝑎

∑︁
𝑝∈𝑆∋𝑎

𝑥2
𝑝 ∀𝑎 ∈ 𝐴, (12)

𝛽𝑎 : −
∑︁

𝑝∈𝑆∋𝑎
𝑥1
𝑝 +

∑︁
𝑝∈𝑆∋𝑎

𝑥2
𝑝 ≤ −𝑞𝑎 ∀𝑎 ∈ 𝐴, (13)

𝜃𝑖𝑎 :
∑︁

𝑝∈𝑆 |𝑎∈𝑝
𝑥𝑖𝑝 ≤ 𝑏𝑎 ∀𝑎 ∈ 𝐴, 𝑖 = 1, 2. (14)

where 𝑤0 ∈ R+ represents the weight given to the number of
monitored links in the objective function, 𝑏𝑎 ∈ R+ represents the
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bandwidth capacity of link 𝑎 ∈ 𝐴 and 𝛼, 𝛽 and 𝜃 represent the dual
variables associated with Constraints (12), (13) and (14), respec-
tively. Constraints (7)-(9) guarantee that if a link is monitored it
must belong to a new monitoring path or an alternative path used
for monitoring. Thanks to the follower, Constraints (10) ensure that
all traffic matrices satisfying the loads on the monitored links, give
the same load on the recovered links. For the follower, Objective
(11) maximizes the total link load differences between two traffic
matrices. Note that only links belonging to both OSPF and alter-
native paths are considered in this objective function. Constraints
(12) ensure that, for every monitored link (i.e., 𝑡𝑎 = 1), the two
matrices give the same load. Constraints (13) computes the load
difference for every link and finally, Constraints (14) guarantee that
each traffic matrix respects the link capacities.

5.2 Single-level model
In the literature, several methods have been developed to solve the
Bilevel optimization problems. One approach, called "Single-Level
Reduction", consists in including the KKT conditions of the follower
as constraints of the leader problem. In our case, we can exploit the
fact that the follower is a maximization problem and 𝜗 (𝑡) ≥ 0 for
any 𝑡 ∈ {0, 1} |𝐴 | (as 𝑞(𝑡) ≥ 0), to guarantee the optimality of the
follower. Let us consider the dual of the follower, given as follows:

min
∑︁
𝑎∈𝐴

∑︁
𝑖∈𝑄

𝜃𝑖𝑎𝑏𝑎 (15)

∑︁
𝑎∈𝑝
(𝛼𝑎𝑡𝑎 − 𝛽𝑎 + 𝜃 1

𝑎 ) ≥ 0 ∀𝑝 ∈ 𝑆, (16)

∑︁
𝑎∈𝑝
(−𝛼𝑎𝑡𝑎 + 𝛽𝑎 + 𝜃 2

𝑎 ) ≥ 0 ∀𝑝 ∈ 𝑆, (17)

𝛽𝑎 ≥ 1 ∀𝑎 ∈ 𝐴′ ∩𝐴, (18)
𝛽𝑎, 𝜃𝑎 ≥ 0 ∀𝑎 ∈ 𝐴. (19)

Claim 5.2.1. All variables 𝜃 can be set to 0.

Proof. From Constraints (10), 𝜗 (𝑡) = ∑
𝑎∈𝐴

∑
𝑖∈𝑄

𝜃𝑖𝑎𝑏𝑎 = 0. Since

𝜃 ≥ 0 and 𝑏𝑎 ≥ 0 for all 𝑎 ∈ 𝐴, the result follows. □

The single-level model can be obtained from PMPCP by replacing
(10)-(14) by the constraints of the dual of the follower together
with

∑
𝑎∈𝐴

∑
𝑖∈𝑄

𝜃𝑖𝑎𝑏𝑎 = 0. By Claim 5.2.1, the single-level model is

equivalent to the following the mixed integer non-linear model:
min

∑︁
𝑎∈𝐴

𝑤0𝑡𝑎 +
∑︁
𝑖∈𝑄
(𝑤1𝑦𝑖 +

∑︁
𝑎∈𝐴

𝑤𝑎𝑥
𝑖
𝑎 ) −

∑︁
𝑟 ∈𝑅

∑︁
𝑝∈𝑃𝑟

𝑤𝑟𝑝𝑧
𝑟
𝑝 (20)

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2), (3), (5)
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (7), (8), (9)∑︁
𝑎∈𝑝

𝛼𝑎𝑡𝑎 =
∑︁
𝑎∈𝑝

𝛽𝑎 ∀𝑝 ∈ 𝑆, (21)

𝛽𝑎 ≥ 1 ∀𝑎 ∈ 𝐴′ ∩𝐴, (22)
𝛽𝑎 ∈ R+ ∀𝑎 ∈ 𝐴. (23)

The above model can be linearized easily as follows.

Claim 5.2.2. For 𝑎 ∈ 𝐴, let 𝑓 ∈ R be a new variable. For an enough
big value𝑀 ∈ R+, Constraints (21) can be replaced by∑︁

𝑎∈𝑝
𝑓𝑎 =

∑︁
𝑎∈𝑝

𝛽𝑎 ∀𝑝 ∈ 𝑃,

𝛼𝑎 −𝑀 (1 − 𝑡𝑎 ) ≤ 𝑓𝑎 ≤ 𝛼𝑎 +𝑀 (1 − 𝑡𝑎 ) ∀𝑎 ∈ 𝐴,
−𝑀𝑡𝑎 ≤ 𝑓𝑎 ≤ 𝑀𝑡𝑎 ∀𝑎 ∈ 𝐴.

6 NUMERICAL EXPERIMENTS
We now evaluate the monitoring paths computation on randomly
generated networks. For benchmarking, we compare our solution
to the "Naive approach" which consists in monitoring all alternative
paths with path-tracing. Except for Figure 9, all experiments are
on the partial links monitoring given in Section 5. In our tests, the
models are solved using IBM ILOG CPLEX 12.6 solver [6]. All im-
plementations are in Python on a machine with an Intel(R) Xeon(R)
CPU E5-4627 v2 at 3.30GHz and 504GB RAM, running Linux 64
bits. A maximum of 32 threads has been used for CPLEX, and a
time-limit of 3 hours. The instances have been generated by varying
the following parameters: the number of nodes: {50, 100, 200}, the
number of alternative paths 𝑘 : {2, 4}, the number of "PE" nodes:
{30%, 60%} of the number of nodes, the network density: {20%, 40%},
the maximum number of hops in the monitoring paths 𝐿max: {6, 12}
and the maximum number of monitoring paths 𝑞: {5, 10}.

We consider the following weights in the objective function
• 𝑤0 = 103, 𝑤1 = 102, 𝑤𝑎 = 102 ∀𝑎 ∈ 𝐴,
• 𝑤𝑟𝑝 = 102 × (|𝑝 | + 1), ∀𝑟 ∈ 𝑅 and 𝑝 ∈ 𝑃𝑟 .

These weights give the highest priority to minimizing the number
of monitored links. Throughout this section, some results are pre-
sented in the form of box plots that account for the points between
the 1st (𝑄1) and the 3rd quartile (𝑄3), while the bar in the middle
of the box plot represents the median (𝑄2). The whiskers repre-
sent 𝑄1 − 1.5𝐼𝑄𝑅 and 𝑄3 + 1.5𝐼𝑄𝑅, where 𝐼𝑄𝑅 = 𝑄3 −𝑄 − 1. The
points represent the outliers. The OSPF paths have been computed
between each pair of nodes in the network using the Dijkstra algo-
rithm [7]. For a given node 𝑢 ∈ 𝑉 , for every "PE" node 𝑟 ∈ 𝑅, and
for every outgoing arc 𝑎 ∈ 𝛿 (𝑢), the 𝑘 associated alternative paths
are generated by solving mathematical model (ILP). The model
maximizes the disjointness between the 𝑘 paths without crossing 𝑎.

Fig. 7 displays the reduction ratio on the number of monitored
links when using the monitoring paths described in Section 5 com-
pared to the "Naive approach". Each color corresponds to a distinct
parameter, each of which has two values (see above). In Plot 7.(a),
on instances with 50 nodes, we notice that with few "PE" nodes
(i.e., 30% of number of nodes), the improvement on the number
of monitored links is much higher (83% instead of 65%). This is to
be expected, as the greater the number of "PE" nodes, the more
alternative and OSPF paths there are. On the other hand, we notice
that a high value of 𝑘 gives a better improvement in the number of
monitored links. Indeed, when the number of alternative paths is
high, the links are crossed multiple times. This leads to redundant
monitoring via the "Naive solution". These two behaviours are sim-
ilar on networks with 100 and 200 nodes (Plots 7.(b) and 7.(c)). On
50 node instances, we also notice that the density, the maximum
monitoring path length "P-Length" and the maximum number of
monitoring paths "M-Paths" positively impact the number of mon-
itored links. These three parameters allow to design of efficient
monitoring paths, avoiding repeated crossed links. On instances
with 100 and 200 nodes, The behaviour is ambiguous, and due to a
significant optimality gap, a definitive conclusion cannot be drawn.
Fig. 8 displays a comparison of the following ratios:

• Recovered Links "R": #Recovered links
|𝐴′ | × 100

• Optimality Gaps "G": Upper bound−Lower bound
Lower bound × 100

• Paths for monitoring "M": #Alternative paths−#Paths for monitoring
# Alternative paths × 100

for instances of 50, 100 and 200 nodes. The higher the number
of nodes, the lower the ratio of recovered links. This is due to
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(a) (b) (c)

Figure 7: Reduction ratio on the number of monitored links (%) for 50, 100 and 200 nodes respectively.

Figure 8: Ratio of Recovered links, Optimality gap and Re-
duction of paths used for monitoring.

Figure 9: Reduction comparison of the number of paths used
for monitoring between Total and Partial monitoring.
the optimality gap. Indeed, this latter increases with the number
of nodes impacting the quality of the solutions. We see the same
impact on the number of paths used for monitoring. We save 68%,
58% and 39% of paths, in average, for instances of 50, 100 and 200
nodes, respectively. These results depend mainly on the quality of
the solutions obtained within the time limit. The last Fig. 9 shows a
comparison of the reduction ratio on the number of paths used for
monitoring between "Total Monitoring" version given in Section 4
and the "Partial Monitoring" given in Section 5. The second version
performs much better than the first one. This was expected since
in the second version, the paths used for monitoring can avoid
crossing through Recovered links and Links out of OSPF paths.

7 CONCLUSION
In this paper, we propose a way to exploit the in-band telemetry
for accurate congestion mitigation. We have shown that a lot of
redundancies in the measurements appear when alternative paths
are monitored. We proposed to design extra "monitoring paths" to
help drastically decrease the number of monitored links. Moreover,

we have shown that up to 25% of links in alternative paths can be
recovered without monitoring. Indeed, the load over these links
can be recovered from the measurement of others. From a practical
perspective, an efficient heuristic needs to be developed to solve
the problem in a short time in order to be used in practice.
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ABSTRACT
Physical Cell IDs (PCIs) are numerical identifiers crucial for dis-
tinguishing various antennas, or cells, within telecommunication
networks like 5G. They play a vital role in facilitating the efficient
connection of mobile devices to different cells, preventing issues
such as interference. However, the growing scale of 5G networks,
coupled with a limited pool of unique PCIs, allocating different PCI
to adjacent cells is a challenge known as the PCI planning problem.

In this scenario, this article explores the use of Quantum Com-
puting (QC) to solve the PCI planning problem. With remarkable
advancements in recent years, QC has shown great potential for
solving complex optimization problems. To discern the advantages
QC could bring to PCI planning, we analyzed the performance of
classical and quantum methods across diverse network configu-
rations. Our results show that quantum methods yield solutions
equivalent to exhaustive search but with substantially reduced
execution time, opening new research opportunities in QC and
telecommunications.

1 INTRODUCTION
Mobile phones can transmit and receive data by connecting to
antennas, also known as cells, at specific frequencies. These cells
are often distributed among different telecommunications towers
and are identified through a number known as Physical Cell ID (PCI).
It is essential to assign distinct PCI values to nearby cells to mitigate
Inter-Cell Interference (ICI), i.e., using the same frequency band by
adjacent cells. An efficient PCI allocation provides a high-quality
communication service to many users, avoiding, for example, long
cell allocation time.

However, the number of available PCIs is limited to only 1008
in current 5G networks, making the efficient allocation of these
identifiers challenging, especially with these networks’ growing
density. This problem, known as the PCI planning problem, is
an NP-complete combinatorial optimization problem, with recent
works in the area proposing the use of heuristics, such as reuse
distance [9] and Glowworm swarm optimization (GSO)[11]. For
example, commercial tools such as Atoll by Forsk use Monte Carlo
simulation [6] to solve the PCI planning problem.
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The innovative work of Gui et al. [7], for example, proposes a
new combinatorial optimization model to describe collision, confu-
sion, and𝑚𝑜𝑑 𝑞 interference comprehensively and quantitatively.
The PCI planning problem was mapped as a Binary Quadratic Pro-
gramming (BQP) model, and a Greedy algorithm was developed to
configure PCIs automatically for each cell in the whole network.
To evaluate the optimization performance of the proposed algo-
rithm, numerical simulations were performed compared with the
scheme implemented in the current network and the classical graph
coloring algorithm. The experimental results demonstrated that
the Greedy algorithm had a significant advantage in reducing the
collision, confusion, and𝑚𝑜𝑑 3 interference in scenarios using 1131
cells and 30 PCI. The Greedy algorithm not only eliminates conflict
and confusion completely but also reduces the mod 3 interference
by 26.213% more than the baseline scheme and far more than the
improvement ratio of 4.436% given by the classical graph coloring
algorithm.

On the other hand, Quantum Computing (QC) has seen rapid
advancement in recent years, with companies like IBM and D-Wave
launching new computers almost every year and an estimated in-
vestment of US$ 38.6 billion worldwide in just 20231. Among the
various application possibilities, QC has excellent potential for solv-
ing combinatorial optimization problems, such as PCI planning, due
to using quantum mechanical phenomena, such as superposition.
This phenomenon implies the main difference between classical
and quantum computers: while the former use the bit as the basic
unit of information, which can be 0 or 1, quantum computers use
the quantum bit (qubit), a linear combination of the base states 0
and 1, allowing more information processing with fewer units.

The first work to propose using QC in PCI planning is Boella et
al. Using a simpler Quadratic Unconstrained Binary Optimization
(QUBO) formulation, [4] executed experiments using the quantum
computer from D-Wave to solve a PCI planning. QUBO is a mathe-
matical representation that provides a powerful tool for formulating
and solving certain types of problems in computer science, particu-
larly those that are NP-hard. The formulation was applied to the
PCI planning of 5G and 4G and compared to the legacy procedure,
Fast Greedy Algorithm. To analyze the algorithm’s potential, a se-
ries of tests using a sample set of 450 cells of the TIM network were
performed, decreasing the number of Secondary Synchronization
Signal (SSS) compared to the maximum. In fact, as the number of
SSS decreases, the probability of violating the constraints increases.

1https://qureca.com/overview-of-quantum-initiatives-worldwide-2023/
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In light of the aforementioned considerations, this paper further
explores the potential of QC in solving the PCI planning problem.
Building upon the formulation introduced by [7], we have devised
classical and quantum algorithms to scrutinize their performance
across diverse network configurations characterized by varying
numbers of cells and PCI. The experiments were also performed
using a D-Wave system quantum annealing-based computer.

To the best of our knowledge, this study is one of the pioneering
endeavors to investigate the PCI planning problem within quantum
machines comprehensively. Our investigation meticulously exam-
ines the influences of different parameters on the execution time
and the quality of the obtained results (i.e., how close to the optimal
value), thus contributing novel insights to the evolving landscape of
quantum computing applications in telecommunications planning.

We performed experiments using three methods: exact brute
force, Steepest Descent heuristics, and the hybrid CQMmethod. We
systematically varied the number of cells and distributed PCIs across
66, exploring diverse cell arrangements and yielding 64 unique
scenarios for each method. Our experiments show clear empirical
evidence in favor of quantum computing solutions when comparing
their performance with the exact methods and heuristics.

This paper is organized as follows: Section 2 details the PCI
planning problem; Section 3 explains the QUBO model required to
solve the problem; Section 4 describes the experimental environ-
ment and algorithms used, while Section 5 discuss the obtained
results; finally, Section 6 summarise the main conclusions and
futures works of this research.

2 THE PCI PLANNING PROBLEM
The PCI is crucial in assisting User Equipment (UEs - the technical
term for mobile devices) in identifying which cell to connect to
among various signals within the same frequency. It comprises
two parts: Primary Synchronization Signal (PSS), which can have
values of 0, 1, or 2, and Secondary Synchronization Signal (SSS),
with values ranging from 0 to 355. These elements combine to form
the PCI using the formula 𝑃𝐶𝐼 = 3 ∗ 𝑆𝑆𝑆 + 𝑃𝑆𝑆 . In the 5G context,
this results in a total of 1008 possible PCI values, allowing for reuse
when conducting PCI planning in scenarios with a higher number
of cells.

Due to the finite number of available PCIs, reuse becomes in-
evitable in networks with a cell count exceeding 1008. However,
the wrong allocation of PCI will significantly increase the occur-
rence of ICI. To mitigate these ICIs effectively, it is imperative to
thoroughly examine scenarios involving collisions, confusion, and
𝑚𝑜𝑑 𝑞 interference within neighboring cells (i.e., adjacent cells less
than 1 km apart) operating on the same frequency. This compre-
hensive analysis is pivotal for optimizing PCI allocation strategies
and enhancing overall network performance.

In regular use, as described by Figure 1 (a), UE navigates from
one cell to another with different PCI. Collision may occur if some
neighboring cells have the same frequency and PCI, Figure 1 (b). In
this case, it is difficult for the UE to select which cell to address, as
there are two different cells with the same PCI.

Confusion may occur with two or more neighbor cells sharing
the same frequency and PCI, shown in Figure 1 (c), when the UE

leaves a cell with a PCI and goes to a region with two cells with the
same PCI.

Similar to the collision scenario,𝑚𝑜𝑑 𝑞 interference may occur
in some neighboring cells with the same frequency, as shown in
Figure 1 (d); the PCI 𝑚𝑜𝑑 𝑞 value of one cell is equal to the PCI
𝑚𝑜𝑑 𝑞 value of other cells.

Figure 1: Types of Interferences

3 OPTIMIZATION MODEL
The Quadratic Unconstrained Binary Optimization (QUBO) model
is applied to solve combinatorial optimization problems where the
goal is to find the optimal binary values (0 or 1) for a set of variables
to minimize a quadratic objective function. The optimize function
can be formally defined by Equation 1:

min 𝐹 (𝑥) =
𝑁∑︁
𝑖< 𝑗

𝑄𝑖, 𝑗𝑥𝑖𝑥 𝑗 +
𝑁∑︁
𝑖

𝑄𝑖,𝑖𝑥𝑖 (1)

, where 𝑄 is a 𝑁𝑥𝑁 triangular matrix with real values, with the
diagonal representing the linear weight terms, the off-diagonal the
quadratic weight terms, and 𝑥 is a vector of the binary variables.

This is an important formulation because real-world problems
can be naturally transformed into QUBO form by providing a way
to represent classical optimization problems as quantum problems.
In addition, quantum annealer computers, like those offered by
D-Wave2, are designed to solve QUBO problems efficiently.

The QUBO formulation used in this work to address the PCI
assignment problem was the same as that presented by Gui et al.
[7], where the objective is to minimize collisions, confusion, and
𝑚𝑜𝑑 𝑞 interference.

This work assigns one binary variable for each pair composed
by a cell 𝑖 to PCI 𝑘 :

𝑥𝑖,𝑘 =

{
1 if cell 𝑖 is associated to PCI 𝑘
0 otherwise

(2)

For this formulation, a matrix 𝐴 of dimensions 𝑛 × 𝑛, where 𝑛 is
the number of cells, is constructed, and each element 𝑎𝑖, 𝑗 represents
the relationship between the cell in row 𝑖 and the cell in column
𝑗 . The value 1 will be assigned when they are neighbors and 0

2https://www.dwavesys.com/
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otherwise. Furthermore, the value zero will be associated with the
main diagonal.

In the same way, another matrix 𝐵 is created, also of dimensions
𝑛 × 𝑛, which represents the state of confusion between the cells.
Each element 𝑏𝑖, 𝑗 of 𝐵 represents the relationship between the cell
in row 𝑖 and the cell in column 𝑗 . The value 1 will be assigned when
they are neighbors due to confusion, and 0 otherwise.

Finally, the matrix 𝐿 of dimension𝑚 × 𝑞 calculate𝑚𝑜𝑑 𝑞 inter-
ferences of𝑚 PCIs. Each element 𝑙𝑖, 𝑗 indicates if the 𝑖-th PCI has
𝑚𝑜𝑑 𝑞 equal to 𝑗 . The general expression of 𝐿 is:

𝐿 = [𝐼𝑞, 𝐼𝑞, . . . , 𝐼𝑞︸        ︷︷        ︸
𝑚/𝑞 𝑖𝑡𝑒𝑚𝑠

]𝑇 (3)

, where 𝐼𝑞 is the 𝑞 × 𝑞 identity matrix.
Thus, the QUBO model for PCI planning is described by the

objective function

min
𝑖, 𝑗

𝐹 = 𝜔1
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗

𝑚∑︁
𝑘=1

𝑥𝑖,𝑘𝑥 𝑗,𝑘

+ 𝜔2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗

𝑚∑︁
𝑘=1

𝑥𝑖,𝑘𝑥 𝑗,𝑘

+ 𝜔3
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗

𝑞∑︁
ℎ=1
(
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘𝑙𝑘,ℎ) .(
𝑚∑︁
𝑘=1

𝑥 𝑗,𝑘𝑙𝑘,ℎ)

s.t.
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘 = 1,∀𝑖 →
𝑛∑︁
𝑖

(
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘 − 1
)2

𝑥𝑖,𝑘 ∈ {0, 1},∀𝑖, 𝑘

(4)

with the constraint
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘 = 1,∀𝑖 →
𝑛∑︁
𝑖

(
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘 − 1
)2

(5)

where 𝜔1, 𝜔2 and 𝜔3 are weighting factors, respectively, for the
condition of collision, confusion, and𝑚𝑜𝑑 𝑞 interference, 𝑛 is the
total of cells,𝑚 the number of PCI to be distributed, and the con-
straint that associates only one PCI to each cell leads to a penalty
function to be added to the QUBO formulation.

4 ENVIRONMENT AND ALGORITHMS
As previously mentioned, PCI planning is an NP-complete combi-
natorial optimization problem, and several studies have proposed
heuristics methods and other classical (i.e., non-quantum) strategies
to solve it efficiently [9][11].

In our analysis, we used two classical optimization methods:
(1) Exhaustive Search, which is the easiest method for find-

ing optimization solutions by testing all possible solutions.
Although this method can always find the best solution, its
use is not practical for large problems due to the exponen-
tial number of cases to be tested (combinatorial explosion).
This study used the exhaustive search in small scenarios as
a benchmark for the solution’s value for the heuristic and
quantum methods.

(2) GradientDescent, a simple iterative heuristic that gradually
moves toward a minimal local function based on its gradient.

The gradient of any differentiable function represents how
quickly it moves towards a local minimum. Therefore, the
gradient descent method moves in the opposite direction, al-
ways selecting the largest step. For our analysis, this method
was used as a benchmark for the algorithm execution time
for the exhaustive and quantum methods.

4.1 Adiabatic Quantum Computing
Adiabatic Quantum Computing (AQC) [2] stands as a fundamental
paradigm for quantum computation, drawing upon the adiabatic
theorem [5] in quantum mechanics. According to this theorem, a
quantum system will remain in its ground state if the associated
Hamiltonian changes sufficiently slowly. In broad strokes, AQC
commences with a simple Hamiltonian (𝐻̂0) whose ground state is
readily preparable. Over time, the Hamiltonian is smoothly changed
to represent the problem Hamiltonian (𝐻̂𝑓 ) wherein the ground
state encapsulates the solution to a computational problem. A pa-
rameterized time-dependent Hamiltonian describes the algorithms
associated with AQC (Equation 6)

𝐻̂ = 𝐴(𝑡)𝐻̂0 + 𝐵(𝑡)𝐻̂𝑓 (6)
where 𝑡 ∈ [0, 1] and 𝐴(𝑡) and 𝐵(𝑡) are the functions that describe
the interpolation between the Hamiltonians and that obey the
generic boundary conditions given by

𝐴(0) ≠ 0, 𝐵(1) ≠ 0, 𝐴(1) = 𝐵(0) = 0 (7)
As the system undergoes evolution, 𝐴(𝑡) gradually decreases

while 𝐵(𝑡) increases until, ultimately, the total Hamiltonian is solely
defined by the term associated with 𝐵(𝑡). If the process is slow
enough -achieving adiabatic conditions- the resultant state will
correspond to the ground state of the final Hamiltonian of the
system, which encodes a solution to the problem.

4.2 Quantum Annealing
Quantum annealing (QA) [10] represents a specific implementation
of AQC, with the time evolution of the quantum system draw-
ing inspiration from the classical annealing process in metallurgy,
where a material is heated and slowly cooled to remove defects
and optimize its structure. QA is a heuristic quantum approxima-
tion because the switch from 𝐻̂0 to 𝐻̂𝑓 is determined heuristically,
and the adiabatic conditions are not guaranteed. As a result, QA
is particularly well-suited for encoding binary combinatorial opti-
mization problems, expressed in Ising or QUBO form. These two
representations are equivalent and can be readily transformed into
each other through a simple change of basis. This flexibility makes
QA a valuable approach for tackling a broad class of optimization
challenges in quantum computing.

One of the most popular, widely used QA devices is the D-Wave
System, featuring a quantum processor with a set of supercon-
ducting qubits arranged in a configuration analogous to a chain
of Ising-type magnetic spins. In this platform, 𝐻̂0 is constructed
by applying transverse magnetic fields, aligning the spins (qubits)
in the direction of the field. The adiabatic interpolation (process
𝐻̂0 → 𝐻̂𝑓 ) unfolds by slowly reducing the intensity of the trans-
verse field to zero. Simultaneously, the intensity of the couplings
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between the qubits increases, facilitating the transition from the
initial state to the final Hamiltonian.

5 COMPUTATIONAL EXPERIMENTS
As previously mentioned (Section 4.2), D-Wave Systems is the mar-
ket leader in QA devices. Founded in 1999 in Canada, the company
developed “the world’s first commercially available quantum com-
puter” with 128 qubits in 2011 [8]. Currently, its more powerful
device, the Advantage3, has 5000 qubits and an optimized topol-
ogy, being capable of solving complex commercial problems with
more than 1 million variables. Over the years, the company has
accumulated more than 200 patents and 100 research publications
in various areas, such as logistics and financial services.

D-Wave is not only a pioneer in quantum hardware but also in
software and services. It developed its own Python-based open-
source software development kit (SDK), the D-Wave Ocean 4. Addi-
tionally, the company provides a cloud service, the D-Wave Leap5,
for real-time remote access to its devices. The experiments reported
in this article were performed directly through the Leap interface.

The essential elements of a D-Wave solution are the samplers
and solvers. A sampler is a process that samples low-energy states
from objective functions to find the best solution. It takes a problem
formulated as QUBO and returns a set of potential solutions rep-
resented as binary assignments (0s and 1s) for the variables in the
model. These samplers run on a device known as a solver, which
can be mainly classified into three types: (1) Classical (i.e., a classic
computer), (2) Quantum (i.e., a QA computer), and (3) Hybrid, an
architecture that explores the advantages of both types of resources
(classical and quantum). In our experimental analyses, we’ve used
two classical solvers, Exact Solver and Steepest Decent, which
implement, respectively, the exhaustive search and a discrete ver-
sion of gradient descent, and a Hybrid Solver Service (HSS) known
as Constrained Quadratic Model (CQM).

5.1 Constrained Quadratic Models
CQM involves linear constraints, i.e., the constraint does not need
to be translated into a penalty function. Thus, the restriction that
associates only one PCI for each cell presented in Equation 5 can be
used without the need to rewrite it as a penalty. In this framework,
besides the quantum stage, a classical pre-processing involves gen-
erating an initial solution with a classical heuristic to the CQM
that can be used as a starting point for the quantum annealing
algorithm, potentially reducing the time required to find a good so-
lution. The starting point will depend on the classic algorithm used
in the heuristic. In our experiment, we used the default D-Wave
configuration, which corresponds to Simulated Annealing.

Figure 2 illustrates howHSS CQMworks [1]. The solver (blue) in-
vokes some heuristics (threads) that run on classic CPUs and GPUs
(green) and searches for good-quality starting point solutions. Each
heuristic solver contains a quantum module (QM) that formulates
and sends quantum queries to a D-Wave QPU (orange). The re-
sponses to these queries can guide heuristic search or improve the

3https://www.dwavesys.com/solutions-and-products/systems/
4https://www.dwavesys.com/solutions-and-products/ocean/
5https://www.dwavesys.com/solutions-and-products/cloud-platform/

quality of a current set of solutions. In the end, each heuristic sends
its best solutions to the solver.

Figure 2: How CQM works at D-Wave.

5.2 The problem instances
Were created two groups of instances:

(1) Synthetic Instances - cell arrangements generated syntheti-
cally to simulate collision, confusion and mod q interference.

(2) Real Instances - cell arrangements based on real world
datasets.

Each algorithm was expected to be tested through 64 instances
(Qtty Exp), with varying cell neighborhood arrangements (Ins) and
the quantity of PCI available for allocation (Qtty PCI), according to
Table 1. Synthetic instances were arranged in four ways: a 5-cell
instance, named X5, Figure 3, with matrix A configured in chess
pattern, i.e., cells 1, 3, and 5 neighbors of cells 2 and 4; and 5, 6,
and 9-cell instances, with all cells being neighbors between to each
other, respectively named V5, Figure 4, V6, and V9. Real instances
were created using public information of 5G network cells available
from a telecommunications governmental agency in Brazil6. The
circles in Figure 5 define the groups with 15, 27, 48, and 66 cells
named R15 (yellow circle with a 0.5 km radius), R27 (white circle
with a 0.7 km radius), R48 (red circle with a 0.98 km radius), and
R66 (blue circle with a 1.25 km radius), respectively. Cells that are
less than 1 km apart are considered neighbors. In Figures 3 and 4,
who represent neighborhood matrix A, value 0, zero, indicates that
the cell from that line is not neighbor to the cell in that column, the
same way that the value 1, one, means that they are neighbors.

Figure 3: Instance X5, five cells as a chess pattern.

Initially, it was decided to assign the same weight to all penalties,
that is, the factors 𝜔1, 𝜔2, and 𝜔3 will have values equal to 1. This
promotes a better understanding of each algorithm, allowing them
to find solutions that satisfy all constraints in a balanced way. In
6https://sistemas.anatel.gov.br/se/public/view/b/licenciamento.php
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Figure 4: Instance V5, five cells all neighbors.

Table 1: Instances Distribution. Qtty PCI and Exp describe,
respectively, the number of PCI and experiments per instance

Ins Type Qtty PCI Qtty Exp
X5 Synth 1 to 5 5
V5 Synth 1 to 5 5
V6 Synth 1 to 6 6
V9 Synth 1 to 9 9
R15 Real 1 to 15 15
R27 Real 1,2,3,6,9,15,27 7
R48 Real 1,2,3,6,9,15,27,48 8
R66 Real 1,2,3,6,9,15,27,48,66 9

TOTAL 64

Figure 5: Real instances, showing cell arrangements with 15
cells (yellow circle), 27 cell (white circle), 48 cell (red circle)
and 66 cell (blue circle).

this scenario, of the three algorithms tested, the exact solver was
the slowest to complete each experiment. Furthermore, the fact of
having to traverse the entire search space made the execution of
some scenarios unfeasible. Thus, the algorithm failed to generate
results in 33 of the 64 predicted scenarios.

Table 2 shows the energy (i.e., the final Hamiltonian) of exact
(EX), steepest descent (SD), and CQM methods to some of the
synthetic instances simulated. Table 3 shows the energy of steepest
descent (SD) and CQM methods for some real instances simulated.
It can be seen that the exhaustive and CQM methods always find
the lowest energy when compared to SD.

Figures 6, 7 and 8 show the execution time for V9 instances
applying the exact algorithm, SD and CQM, respectively. It can be

seen that SD has the shortest execution time, but, as highlighted in
Table 2, this method does not always present the optimal solution
(e.g, instances V5 with 4 and 5 PCI). This behavior is repeated in
all other instances. These graphs also demonstrate the more rapid
growth of the exhaustive search in comparison to other methods.

Figure 6: Execution duration based on the quantity of allo-
cated PCI - Instance V9 - Exact Solver.

Figure 7: Execution duration based on the quantity of allo-
cated PCI - Instance V9 - SteepestDescent Solver.

6 CONCLUSION
This paper explored the use of quantum computing to better solve
the Physical Cell ID (PCI) planning problem. PCI planning is essen-
tial for minimizing the impacts of Inter-Cell Interference (ICI) in 5G
Networks, such as collision, confusion, and𝑚𝑜𝑑 𝑞 interference. Due
to its complexity, this problem is usually solved with heuristics.

Our results show a clear advantage of quantum computing. CQM,
the hybrid quantum-classical method, found solutions equivalent to
the exact solver, but faster. In addition, besides the steepest descent
has the shortest run, it does not produce optimal results.

As a future work, we plan to enhance our comparative analysis
by exploring D-Wave Quantum Solvers, such as the Binary Qua-
dratic Model (BQM)7, other classic heuristics, such as Simulated
7https://docs.ocean.dwavesys.com/en/stable/concepts/bqm.html
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Figure 8: Execution duration based on the quantity of allo-
cated PCI - Instance V9 - CQM Solver.

Table 2: Energy of Synthetic Instances

Ins PCI EX SD CQM
X5 1 32 32 32
X5 2 8 8 8
X5 3 4 4 4
X5 4 2 2 2
X5 5 0 0 0
V5 1 60 60 60
V5 2 24 24 24
V5 3 12 12 12
V5 4 8 12 8
V5 5 4 8 4
V6 1 90 90 90
V6 2 36 36 36
V6 3 18 18 18
V6 4 14 14 14
V6 5 10 10 10
V6 6 6 12 6
V9 1 216 216 216
V9 2 96 96 96
V9 3 54 54 54
V9 4 44 48 44
V9 5 36 36 36
V9 6 30 30 30
V9 7 26 28 26
V9 8 22 30 22
V9 9 18 22 18

Annealing, Tabu Search, and better exact algorithms for solving
QUBO problems [3]. Additionally, we want to extend our current
analysis beyond Quantum Annealing systems, testing, for example,
gate-based systems such as the ones provided by IBM8.

8https://www.ibm.com/quantum

Table 3: Energy of Real Instances

Ins PCI SD CQM Ins PCI SD CQM
R15 2 266 242 R27 3 566 468
R15 3 148 134 R27 6 336 258
R15 4 124 98 R27 9 222 180
R15 5 104 66 R27 15 188 154
R15 6 84 62 R27 27 152 126
R15 7 70 58 R48 3 1392 1266
R15 8 56 54 R48 6 852 682
R15 9 54 50 R48 9 616 488
R15 10 50 46 R48 15 420 378
R15 11 62 44 R48 27 354 312
R15 12 62 42 R66 3 1896 1824
R15 13 44 40 R66 6 1220 920
R15 14 44 38 R66 9 910 650
R15 15 42 38 R66 15 614 468
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Machine learning (ML) has become a useful tool in cybersecurity for anomaly and attack detection
tasks [3]. A large amount of training data is required to get the best performance of those models.
However, training models using real user data often leads to privacy exposure and ethics problems.
The option of real data anonymization has been proven unsuccessful in providing satisfactory privacy
protection without causing data quality degradation. The option left is the generation of new realistic
synthetic data that can substitute real data in ML training processes. Compared to generating images,
learning distributions on multi-variate time-series data poses a different set of challenges. Multi-variate
data is more diverse in the real world, and such data usually has more complex dependencies (temporal
and spatial) as well as heterogeneous attribute types (continuous and discrete) [11]. Synthetic data
generation models often treat each column as a random variable to model joint multivariate probability
distributions. The modelled distribution is then used for sampling. Traditional modelling algorithms
have the limitation of distribution data types, and due to computational issues, the dependability of
synthetic data generated by these models is extremely limited [9]. Recently, Generative Adversarial
Network (GAN)-based approaches have augmented the ability to generate data [5, 10, 7, 6]. However,
they are either restricted to a static dependency without considering the temporal dependence usually
prevalent in real-world data [10, 8], or only partially build temporal dependence inside GAN blocks [4].

The work aims to investigate if GAN architecture can learn the diverse types of industrial traffic
instigated by users and machines on a network with multiple industrial protocols. For that, the TON_IoT
open-source dataset [1] is used containing Modbus protocol traffic. The following research questions are
tackled: 1) Are GANs able to overcome their usual limitations and be able to generalize and generate
realistic industrial network traffic? 2) Can synthetic data generated by these models be injected and fool
a genuine industrial service? A methodology comprised of two steps is proposed as an answer. The first
is a generator module that can create synthetic network packets. The second is a simulator module that
injects the synthetic data into the network to simulate a genuine Modbus client process.

On the one hand, a generator module is proposed composed of a GAN and a data loader in charge
of feeding the model with network traffic in pcap format. Training is performed for each simulated
network so that each model will be able to replicate the characteristics of the trained data traffic to be
simulated by the injection module. It has already been proved that the output of GAN models suffers
from mode-collapse, a decrease in the variability by continuously generating instances of the same data).
To avoid this, a Wasserstein GAN (also known as WGAN is implemented) [2]. When training the traffic
generator, the pipeline is comprised of three steps: the data acquisition, the data transformation (via an
autoencoder), and the model fitting. First, the network traffic is extracted from the desired environment
via tshark1 commands. After a raw pcap is obtained, the categorical features of the packets (for example,
source, destination, or protocol fields) are first passed through a one-hot-encoding process. After that,
the vectorized data is used for training an autoencoder and both, the encoder and decoder parts are
extracted. Then embedded into vectors of continuous space via the autoencoder’s encoder. Afterwards,
the parsed data values are ingested in the WGAN architecture for training. Once the stop conditions are
fulfilled, the model can represent new data as continuous space vectors, to get them back to the original
state, the inverse path is followed: The decoder is used to reconstruct the embedding-space-belonging-
generated data, and then the inverse operation of the one-hot encoder is applied. The generated data is

1https://www.wireshark.org/docs/man-pages/tshark.html (Accessed on: 10/08/2023)
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then saved in a CSV format for the simulator to read them. To be able to adapt to different sources,
the presented pipeline starts from a traffic capture performed by tshark and stored in a pcap file, after
which a script is executed that generates a CSV file containing the characteristics of the protocol in the
captured traffic.

On the other hand, a simulator module is developed to validate the synthetic data generated, this
module is composed of a decoder and a packet injector tool called Scapy 2. Scapy will automatically
generate the remaining header values to send the synthetic data as payload through the network. To
verify the simulation matches the given input, the packet sniffing tool tshark is used. In case any packet
is malformed, tshark will send an alert. The number of generated alerts will be useful to calculate the
malformed packet generation rate of the proposed model.

The expected output should be a complete communication between a Modbus fake client (it does not
possess the service or information of the processes) and a genuine server, with no malformed packets
and payloads that maintain the context of the network. So, an individual observing the network traffic
could not distinguish between a genuine and a fake client. In the future, this research could lead to fully
simulated networks (both clients and servers) based on trained data from external networks, thus helping
other researchers improve their ML models by being able to generate high-quality synthetic training data.
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Many of today’s real-life applications in computer networks require stringent Quality of Service (QoS)
scheduling guarantees in terms of controlled “end-to-end” delay, a.k.a., worst-case delay (WCD); that
is, the delay of any IP packet in a flow must be no larger than a given threshold. According to the
traffic engineering literature, the WCD of a flow of IP packets can be defined as a function of (i) the
(simple) path on the network on which the flow is routed, and (ii) of the bandwidth rate allocated to
the flow along the path. This leads to the definition of the Delay Constrained Routing Problem (DCR),
which requires computing the paths and reserving the resources along them on the IP network, so that
the WCD constraints are respected for all the flows, while some objective function, usually the total
resources utilization, is optimised.
In [1] it is shown that DCR can be formulated as a Mixed-Integer Second-Order Cone Program (MISOCP).
Thus, in the single-flow single-path case, it can be solved efficiently enough with off-the-shelf, general-
purpose solvers for small- to mid-size networks, but may struggle on larger ones. In this study we present
a bespoke, “solver-free” method, based on a nested Benders-Lagrange approach, that provides both upper
and lower bounds of very good quality in extremely short computing times. We start by describing a
model for the DCR problem, which is similar to the one proposed in [1], but with some specific changes
useful for our algorithmic purposes.

min
∑

(i,j)∈A fijrij (1)
∑

(j,i)∈δ−(i)

xji −
∑

(i,j)∈δ+(i)

xij =





−1 if i = s

1 if i = d

0 otherwise
i ∈ N (2)

σ

z
+

∑

(i,j)∈A

(Lxij
2

rij
+ l̄ijxij

)
≤ δ (3)

z xij ≤ rij ≤ cijxij (i, j) ∈ A (4)
xij ∈ {0, 1} (i, j) ∈ A (5)
z ∈ [ρ, cmax] (6)

The arc-flow binary variables xij indicate whether arc (i, j) belongs to the chosen path, and (2) are the
standard flow conservation constraints. Reserved rate variables rij represent the amount of bandwidth
capacity reserved on arc (i, j), and z captures the minimum reserved rate along the path. Constraint (3)
is the WCD for the common Strictly Rate-Proportional packet schedulers, while constraints (4) ensure
that rij = 0 if xij = 0, and ρ ≤ z ≤ rij if xij = 1.
The key observation in our approach is that one can view z as a “complicating” variable, in the sense
that, when z̄ is fixed, the corresponding model (1)–(5), to which we refer as DCR(z̄), is a much easier
optimization problem in the variables x and r. This suggests to use the Generalized Benders Decompo-
sition (GBD) framework [3], but, as we shall see, we will employ it in a nonstandard way. The first step
consists in projecting (1)–(6) onto z, i.e., solving

min{ v(z) : z ∈ [ρ, cmax] }
where v(z) represents the value function, i.e., the optimal value of the Benders’ subproblem DCR(z). The
second step uses the dual representation of v(z)

v(z) = max
{

min
{
fT r + uTG(x, r, z) : (x, r) ∈ X

} }
(7)

Int. Network Optimization Conf. (INOC) 2024 Dublin, March 2024

Session 4C: Routing

INOC 2024 118 Dublin,11–13 March 2024



REFERENCES REFERENCES

where G(x, r, z) denotes the set of constraints (linking variables x and r with the complicating variable
z) that are dualized with multipliers u, and X represents the remaining set of constraints on x and r.
Denoting by

ψ(z, u) = min
{
fT r + uTG(x, r, z) : (x, r) ∈ X

}

this manipulation yields the equivalent Benders’ master problem for DCR

min
{
r0 : r0 ≥ ψ(z, uj) j = 1 . . . p , z ∈ [ρ, cmax]

}

In order to apply the GBD method, the functions ψ(z, uj) should be convex in z and satisfy the P -
property [3]; that is, for every uj , j = 1 . . . p, the minimization problem involved in ψ(z, uj) should be
solved independently of z. Unfortunately, the DCR model does not satisfy any of these conditions.
Therefore, we set out to construct proper approximations of the functions ψ(z, uj). The first step is to
dualize constraints (2) and (3) with multipliers πi, i ∈ N and λ ≥ 0, respectively. Denoting by u = (π, λ)
the vector of dual multipliers, and defining

q(u, x, r) =
∑

(i,j)∈A

(
fijrij + λL

x2
ij

rij
+ λl̄ijxij − πixij + πjxij

)

we obtain
ψ(z, u) = −πT b+ λσ

z − λδ + min(x,r)
{
q(u, x, r) : (4) , (5)

}
(8)

Despite still lacking convexity and the P -property, the corresponding master problem presents three
advantages for the construction of approximations. First, for a given value of z̄, the Lagrangian dual
can be efficiently solved (see [2]), therefore we can easily compute the corresponding optimal dual vector
ū. Second, the minimization problem in (8) is separable on the arcs (i, j) ∈ A. Third, by analyzing the
behaviour of ψ(z, u) as a function of z, one can prove the following (we omit details for brevity):

• ψ(z, u) is non-convex and non-differentiable for z ∈ V1 = [ρ, z̄]

• ψ(z, u) is convex for z ∈ V2 = [z̄, cmax]

In order to apply the GBD framework, we construct convex approximations of ψ(z, uj) in the interval
V1, to obtain a global two-piece convex approximation for the Benders’ master problem. This allows us
to perform iteratively a double line search in the sub-intervals V1 and V2. Computational results are
very encouraging and show that our method consistently provides upper and lower bounds of very good
quality in extremely short computing times on realistic instances even of large size.
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We consider the one-to-one pickup and delivery problem with time windows (PDPTW), a routing problem
in which a set of capacitated vehicles is available to serve customer requests consisting of paired pickup
and delivery locations [1]. Each used vehicle must start its route from the central depot, collect items
from pickup locations, transport them to the corresponding delivery locations, and return to the depot.
All visits must respect customer time windows and vehicle capacity constraints.

This variant has several applications in meal delivery services, oil transportation between terminals
and offshore platforms, and disaster relief in humanitarian logistics [2]. Given that real-world data is
often estimated or uncertain, incorporating uncertainties into the decision-making process is fundamental.
Resilient routes, which have a higher chance of being feasible despite the data variability, can be obtained
using fuzzy programming [3], stochastic programming [4], and robust optimisation [5].

We develop robust optimisation techniques to incorporate demand uncertainty into the PDPTW
formulations. This ensures that optimal routes remain feasible for any demand realisation within an
uncertainty set that suits the decision maker’s risk aversion, without the necessity of choosing a probability
distribution. We propose robust counterparts in which the demands of a given number of requests can
reach their worst-case value based on a parameter known as the budget of uncertainty [6], which is set
by the decision maker. Prior papers introducing uncertainty in the pickup and delivery problem mostly
considered scenario-based uncertainty sets that typically lead to either overconservative or optimistic
solutions [7]. Robust optimisation has so far being applied to the one-to-one variant by [8, 9].

We show how to obtain the robust counterparts in two different ways: (i) through the dualisation
scheme, a commonly employed method in existing literature; and (ii) through the linearisation of dynamic
programming equations, which was recently introduced and has shown superior performance compared to
dualisation in various VRP variants. As we present, the application of these techniques in the PDPTW
is not straightforward, as the pairing of customers impose additional challenges. We assess and compare
the effectiveness of these formulations through computational experiments using benchmark instances
and different levels of budget of uncertainty and demand deviations. The results indicate that the robust
routes are indeed more resilient and can benefit real-world routing applications.
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1 PROBLEM DESCRIPTION AND METHODOLOGY
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Abstract

With technological advancements, it is now possible to deliver non-clinical and certain clin-
ical services at patients’ homes. The provision of home care services can reduce care costs,
improve patients conveniences, and assist conventional hospitals in alleviating overcrowding
in general wards, emergency departments, etc. The efficient utilization of limited resources
meeting all the requirements of service provider, patients, and nurses such as continuity of
care, balanced workload among nurses, minimum operating costs, etc. is essential. In this
study, we develop a multi-period integrated nurse assignment and routing problem as a mixed
integer linear programming problem that considers patient arrivals over time and flexibility in
nurses’ working windows. First, we employ a CPLEX solver to solve the instances and observe
that it only solves a few day-wise sub-instances. To overcome the limitations of the solver, we
propose a subtour elimination based valid inequalities approach. Computational experiments
on randomly generated instances demonstrate that the proposed approach not only improves
computational efficiency but also solves more sub-instances compared to CPLEX.

1 Problem description and Methodology
The home healthcare system consists of care requests, medical staff, and care provider. A detailed
literature review on home healthcare can be found in [1] and [2]. Most home healthcare studies on nurse
assignment and routing problem address the static and single objective problem where all parameters are
known with certainty and the objective is to minimize total travel cost or travel time. However, in order to
develop a practical HHC model, the considerations that address real-life aspects such as dynamic patient
arrivals, nurses’ preferences, changes in appointment times, visit cancellations, etc. are also important.
We explore the multi-period integrated nurse assignment and routing problem where patients are arriving
over time. We also consider nurses’ preferences for flexible work windows, where each nurse specifies their
preferred working window. Each new patient has medical or social service needs. Thus, nurses have two
skill levels and are hierarchical. It implies that nurses with higher skills can serve patients with lower skill
requirements, but otherway is not true. The manager knows all patient related information, including
service duration, frequency, episode of care, etc. The objective of the problem is to obtain best service
delivery plan while minimizing the travel time of all nurses over the planning horizon. The mathematical
model of the studied problem is developed as a mixed integer linear programming problem.

This problem is a NP-hard problem because it combines staff rostering and vehicle routing problem
and both are well-known NP-hard. Therefore, using an optimization solver to solve practical size instances
is not sufficient and it will give either poor quality solutions or no solutions within the given time limit.
Initially, the studied model is coded in Python language (3.8) and solved by employing a standard
IBM ILOG CPLEX 12.20 solver. Limitations on CPLEX are identified and then we propose a subtour
elimination based valid inequalities approach with the hope that it will improve the bound of the LP
relaxation. Hence, it will overcome the limitations of CPLEX by improving computational efficiency.
Before starting the optimization of the original MILP model we have done preprocessing based on the
structural properties of the problem.
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2 Results and Discussion
The applicability and validity of the model and the suggested solution algorithm have been investigated
using computational experiments on randomly generated instances. For this study, the test instances
have been generated with three social workers, two medical nurses, and a maximum of five new patients
arriving per day. We have experimented on two instances (2 × 8 = 16 day-wise sub-instances). We set
a computational time limit of 1800 seconds as the stopping criteria for solving each sub-instance with
CPLEX. All computational experiments are conducted on a desktop equipped with a 12th Gen Intel(R)
Core(TM) i7-12700 2.10 GHz and 64.0 GB RAM. Table 1 shows the results for instance-1, while Table 2
shows the results for instance-2. The results for each instance capture details such as accepted patients,
patient set, objective value, computational time, and objective value for both CPLEX and CPLEX with
valid inequalities cases. Additionally, a few more information such as the number of cuts added, and LP
relaxation (LPR) bound improvement in the case of CPLEX with valid inequalities are recorded. Finally,
the improvement in the computational time is presented in the last columns of the Tables.

The results for instance 1 show that CPLEX solves sub-instances till day − 5 and it does not produce
any feasible solutions within the specified time limit for sub-instance corresponding to day − 6. On the
other hand, CPLEX with valid inequalities solves sub-instances till day day − 6 (one extra sub-instance
compared to CPLEX). The proposed algorithm improves the computational time for all sub-instances
of instance 1. We can also observe that the proposed algorithm also improves the linear programming
relaxation bound up to 101%. The computational results for instance 2 are shown in Table-2. CPLEX is
able to solve four sub-instances till day − 4, however, it could not solve the day − 5 sub-instance for the
given time limit. Nevertheless, the proposed algorithm solves all sub-instances within the specified time
limit. It also improves computational efficiency except for the sub-instance corresponding to day−4 which
takes about 3 seconds more time than CPLEX. The linear programming relaxation bound improvement
is achieved up to 85%. The details can be found in Table-2. Considering the results, we can conclude
that to get consistency in solving all sub-instances of any reasonable size instance of the studied problem,
there is a need to develop better solution techniques.

Table 1: Results for Instance-1

Day Accp_pat Pat_set Obj_val
CPLEX CPLEX+valid inequalities

CTIComp_time Opt_gap Comp_time Opt_gap nb_cuts LPR_b
1 5 5 10.71 0.203 0 0.078 0 14 60.129 61.576
2 5 10 18.11 0.36 0 0.266 0 23 55.725 26.111
3 5 15 28.08 0.875 0 0.75 0 34 63.271 14.286
4 5 20 38.39 10.328 0 8.422 0 45 73.944 18.455
5 5 25 44.47 47.719 0 42 0 61 47.109 11.985
6 0 25 39.53 – – 48.343 0 55 101.914 –

Table 2: Results for Instance-2

Day Accp_pat Pat_set Obj_val
CPLEX CPLEX+valid inequalities

CTIComp_time Opt_gap Comp_time Opt_gap nb_cuts LPR_b
1 5 5 17.62 0.094 0 0.109 0 11 15.719 0
2 4 9 19.22 0.25 0 0.25 0 23 27.075 6
3 5 14 29.35 4.828 0 3.047 0 29 24.818 36.889
4 5 19 34.64 28.156 0 32.562 0 45 37.112 -8.54
5 2 21 35.24 – – 1800 2.2 48 67.412 –
6 2 23 30.11 – – 1800 4.2 46 85.734 –
7 1 24 25.97 – – 1800 1.8 43 80.989 –
8 5 26 25.35 – – 1800 2.1 47 74.189 –
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In this study, we investigate adaptive partition-based methods (APMs) in the context of a shortest-path
network interdiction problem involving a leader (defender) and a follower (attacker). The problem was
first introduced by Nguyen and Smith [2], in which the leader aims to maximize the expected shortest-
path cost by raising the cost of arcs in the network, subject to a budget constraint. After observing the
leader’s decision, the follower selects a shortest source-sink path. The asymmetry in the game arises from
to the leader having to make a decision (i.e., raising arc costs) in advance and thus, only knowing the
distribution of arc costs (e.g., uniform distribution). In contrast, the follower observes the exact arc costs
when selecting a source-sink path.

Nguyen and Smith proposes an algorithmic solution approach that involves adaptive partitioning,
which iteratively divides the uncertainty region into smaller non-overlapping sub-regions and examines
the bounds on the attacker’s shortest-path cost. Optimality is concluded once this cost is within a prede-
termined tolerance. The studied approach shows to be computationally expensive and highly dependent
on the chosen value of the optimality tolerance.

In our study, we aim to examine APMs’ efficacy in solving the introduced shortest-path network
interdiction problem in both the support space and the scenario space. Alternative approaches leverag-
ing APMs which can permit other cost distributions besides uniform distribution are also investigated.
(APMs have previously been explored in the context of two-stage stochasic linear programs which involve
finite and non-finite distributions [1, 3, 4].) Computational experiments are conducted to provide insights
into the methods’ effectiveness.

Problem Formulation. In the problem introduced by Nguyen and Smith [2], the game takes place on
a directed network G = (N, A), where N is the set of nodes and A is the set of arcs. Let the cost of each
arc (i, j) ∈ be denoted by random variable Cij . Arc cost Cij is uniformly distributed in [cL

ij , cU
ij ], where

0 ≤ cL
ij ≤ cU

ij < ∞. Let binary variables x denote the leader’s decision. Define dij as the additional cost
to use arc (i, j) ∈ A if the leader decides to raise arc (i, j)’s cost (i.e., xij = 1). The leader can raise
a maximum number of b arcs. The follower’s set of feasible solutions Y that corresponds to the set of
source-sink paths is given by the set of solutions y satisfying the following constraints:

∑

j∈N :(s,j)∈A

ysj = 1 (1a)

∑

i∈N :(i,t)∈A

yit = 1 (1b)

∑

j∈N :(k,j)∈A

ykj −
∑

i∈N :(i,k)∈A

yik = 0 ∀k ∈ N \ {s, t} (1c)

yij ≥ 0 ∀(i, j) ∈ A. (1d)

Let c̄ij denote the expected cost of each arc (i, j) ∈ A. For a given defense decision x̂, the shortest-path
cost observed by the attacker is bounded above and below by (2) and (3), respectively.

g(x̂, c̄k) = min





∑

(i,j)∈A

(c̄k
ij + dij x̂ij)yij | y ∈ Y



 (2)
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h(x̂, c̄k) = min
∑

(i,j)∈A

(
qij + (cL,k

ij + dij x̂ij)yij

)
(3a)

s.t. qij ≥ (c̄k
ij − cL,k

ij ) − Mij(1 − yij) ∀(i, j) ∈ A (3b)
qij ≥ 0 ∀(i, j) ∈ A (3c)
y ∈ Y. (3d)

Jensen’s inequality implies that g(x̂, c̄) ≥ E[g(x̂, C)] ≥ E[h(x̂, C) ≥ h(x̂, c̄)]. Denoting the leader’s set of
feasible solution X = {x :

∑
(i,j)∈A xij ≤ b, x ∈ {0, 1}|A|}, the leader’s problem is given by:

MP(P) : max
x∈X

∑

k∈K

pkzk (4a)

s.t. zk ≤
∑

(i,j)∈Y P

(c̄k
ij + dijxij) ∀P ∈ P, k ∈ K, (4b)

where P is the set of all source-sink paths in the network, Y P is the set of arcs in path P ∈ P, and K
is a partition of the uncertainty cost region consisting of non-overlapping sub-regions k. Alternative to
model (4), we propose the following model which permits the use of lazy constraints:

MP-Lazy(P) : max
x∈X

z (5a)

s.t. z ≤
∑

k∈K

pk
∑

(i,j)∈Pk

(c̄k
ij + dijxij), ∀P ∈ P × P × · · · P (|K| times). (5b)

Considerations in the Development of APMs. The following considerations are evaluated to
determine an effective partition approach in obtaining an optimal defense decision x. Note that the
algorithmic solution approach involves refining the uncertainty region to obtain tighter bounds on the
shortest-path cost. The refinement decisions involve arc selection (e.g., selecting an arc based on the
magnitude of its uncertainty range versus its likelihood to influence the follower’s shortest path) and
dividing an arc’s cost range (e.g., at the mean base cost or at a base cost determined via sensitivity
analysis). In addition, we also investigate the impact of an aggressive versus a delayed partitioning
approach, and if a combination of these approaches can accelerate the process of obtaining an optimal
solution. (A heavily refined uncertainty region may require less exploration of the solution space but
can increase the computational effort required to solve the leader’s problem due to a larger number of
variables and constraints.) Computational experiments on the model implementation, i.e., a standard
optimization model (4) versus a model utilizing lazy-constraints (5), are also conducted. An integrated
branch-and-cut framework is employed with APMs. Finally, support-space APMs are evaluated against
scenario-space APMs (e.g., sample average approximation). All computational experiments are conducted
on randomly generated networks.
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1 Introduction
Project scheduling is a part of project management that determines the sequence or scheduling plan
for a series of related activities that are constituents of the project. Large-scale projects are often
delayed by unforeseen disruptions that prolong some activities. These disruptions can arise from resource
shortages, unexpected technical challenges, or external factors. To evaluate the robustness of a given
project, one effective approach is to analyze the so-called critical path, i.e., the longest path in the Project
Evaluation and Review Technique (PERT) network, a directed acyclic graph (DAG) consisting of nodes
representing the activities and arcs representing the precedence constraints among them. In the absence
of resource constraints, the critical path determines the makespan of the project [2]. Assessing how
potential disruptions influence the longest-path distance in the PERT network thus helps to understand
the robustness of the project and to identify potential bottlenecks or vulnerable activities. This leads
to a longest-path interdiction problem in a DAG, where the goal of the interdictor is to increase the
longest-path distance as much as possible.

This interdiction problem is well-understood for the case that the failure scenarios are described
by a bound on the total number of disruptions or the cost of increasing individual task durations [1,
3, 4]. However, in practice, such disruptions usually do not happen independently from one another.
For example, a technical issue with certain equipment usually affects all activities making use of this
equipment. Similarly, a delay in the availability or a worse-than-expected performance of employees
can cause correlated disruptions across different project activities. It is important to consider these
interdependencies among various activities in such scenarios.

Therefore, we study a generalization of the aforementioned interdiction problem in which possible
disruptions related to one another are grouped together in the same failure group. To avoid overly
conservative estimates, the number of different failure groups that can be active simultaneously is bounded
by a number given in the input. Within each such group, a polyhedral uncertainty set describes the
possible delays of activities. We call this problem PSIP-FG (Project Scheduling Interdiction Problem
with Failure Groups) for short. In order to assess the robustness of a project, we take the perspective
of an interdictor who tries to prolong the completion/makespan of the project by as much as possible
delaying some groups of activities. To the best of our knowledge, we are the first to model the coupling
of uncertainties that appear among activities within each failure group as well as across multiple groups,
and thus we consider the disruption caused by failure groups altogether. In the following sections, we
will provide a formal description of our model and discuss preliminary results in terms of complexity and
approximability of the problem.

2 Model description
A project can be represented by a directed acyclic graph D = (V, E). Here, each node represents an
activity, with two dummy activities s and t representing the start and the end of the project. Each arc
represents a precedence constraint, i.e., for each (i, j) ∈ E, activity j can only start once activity i is
completed. Given a vector of activity durations d ∈ RV , the makespan of the project is given by the
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length of a longest s-t-path in D (where the length of a path P is given by the sum of its node weights∑
v∈V (P ) dv).
We assume that the set of activities is classified into the union of m groups, that is V = V1∪V2∪. . .∪Vm.

Every activity i has a nominal duration di. For every failure group Vr, r ∈ [m], there is a polytope

Qr = {x ∈ RV : Ax ≤ b, x ≥ 0 and xi = 0 for i /∈ Vr}

describing possible disruptions. We assume that the delay of different failure groups is additive, so given
xr ∈ Qr, r ∈ [m], the prolonged activity durations are defined as dx = d +

∑m
r=1 xr. The task of the

interdictor is to find a subset S ⊆ [r] with |S| ≤ k and vectors xr ∈ RV for r ∈ [m] with xr ∈ Qr for
r ∈ S and xr = 0 for r ∈ [m] \ S, so that the length of a longest s-t-path with respect to the activity
durations dx is maximized.

3 Preliminary results and future research
Our ongoing research has derived some hardness results for the PSIP-FG problem and yielded insights
into the aspect of the approximation algorithm. An interesting special case arises when the number of
delayed activities in each group Vr is bounded by a number ℓr, and the alternative processing time of any
activity i ∈ Vr is fixed. Using two distinct reductions from Set Cover and 3-SAT problem, we show
the NP-hardness of PSIP-FG even in the following two special cases: (i) all the activities in the group
Vr can be delayed, (ii) exactly one activity is allowed to be delayed in each group. We further investigate
the approximability of general PSIP-FG and obtain an inapproximability bound

Theorem 1. PSIP-FG does not admit (1 − 1/e + ϵ)-approximation for some ϵ > 0 unless P = NP .

Proof Sketch: Our proof relies on the reduction from Max k-cover: Given an instance of Max k-cover
with a ground set and a collection of subsets of the elements, we construct an instance of PSIP-FP, where
the set of activities corresponds to the ground set and failure groups are associated with subsets of the
Max k-cover instance. The interdiction budget is set to k. Activities are arranged in series with default
durations of 0. The uncertainty set for each group allows increasing the duration of each activity to 1
within the group. We show that the maximum union of k subsets is the ground set if and only if the
distance of the interdicted longest s-t-path in the project network equals the cardinality of the ground set.
Theorem 1 follows from the fact that it is NP-hard to approximate Max k-cover within (1−1/e+ϵ).

This inapproximability result even holds for (i) and even when D is a series-parallel graph. We also
devised a 1

k -approximation for the general version of the problem with arbitrary polyhedral uncertainty
sets in each failure group.

Our next step will focus on identifying a harder inapproximabilty bound for general PSIP-FG from
some special project network structure or on exploiting an approximation algorithm with a better guar-
antee. It is also of interest to identify some tractable or better approximable cases of PSIP-FG, for
example, when the failure groups are restricted to node sets inducing a connected component in the
graph. Additionally, we will also work on developing heuristic algorithms for solving realistic instances
of the problem in practice.

References
[1] Gerald G Brown, W Matthew Carlyle, Robert C Harney, Eric M Skroch, and R Kevin Wood. Inter-

dicting a nuclear-weapons project. Operations Research, 57(4):866–877, 2009.

[2] Eli Goldratt. The critic chain. great barrington, 1997.

[3] Eli Gutin, Daniel Kuhn, and Wolfram Wiesemann. Interdiction games on markovian pert networks.
Management Science, 61(5):999–1017, 2015.

[4] R Kevin Wood. Deterministic network interdiction. Mathematical and Computer Modelling, 17(2):1–
18, 1993.

Int. Network Optimization Conf. (INOC) 2024 Dublin, March 2024

Session 5A: Network Interdiction

INOC 2024 128 Dublin,11–13 March 2024



An all-pairs shortest path coloring model to optimize network
intrusion detection systems

Edoardo Scalzo1, Floriano De Rango2,3, Francesca Guerriero1, Antonio Iera2,3, and
Mattia Giovanni Spina2,3

1Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende (CS) 87036, Italy, �
{edoardo.scalzo, francesca.guerriero}@unical.it

2Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, Rende (CS) 87036,
Italy, � {f.derango, antonio.iera, mattiagiovanni.spina}@dimes.unical.it

3CNIT - National Inter-University Consortium for Telecommunications, Parma, (PR) 43124, Italy

The colorability problem represents a stimulating challenge from both a theoretical and practical stand-
point. Colorability is a concept that can be extended and integrated into a variety of combinatorial
problems, leading to the creation of new models and variants that combine the main characteristics
of classical problem with the unique challenges of coloring functions ([2], [4]). These new models can
mathematically represent several problems that arise in real-world applications ([7], [6], [8]).

This work introduces a new variant of the all-pairs shortest path problem, which integrates a specific
coloring constraint into the traditional framework. In this variant, the challenge is not only in solving the
all-pairs shortest path, but also in strategically coloring a subset of vertices within a given edge-weighted,
undirected, connected graph. With a set of colors at our disposal, the objective is to color certain vertices
in such a way as to minimize the total cost of the shortest paths between all pairs of nodes, while satisfying
a colorability constraint. This constraint requires that every shortest path must pass through at least
one colored vertex for each color. Additionally, coloring a vertex incurs a cost, which is factored into the
overall objective function to be minimized. This formulation adds a significant layer of complexity to the
well-studied all-pairs shortest path problem.

We focus on the mathematical modeling of this problem, defining it as a non-linear integer program-
ming model. In the proposed formulation, binary variables are used to represent both the traversing of
edges and the coloring of vertices. The non-linearity of the model arises from the constraint ensuring
that each shortest path contains at least one node of each color. We explore linearization techniques
to effectively manage the combinatorial explosion, caused by the integration of coloring constraints into
the shortest path problem. Additionally, the nature of the problem implies the potential for cycles in-
duced by the coloring constraint. Therefore, our model requires the inclusion of subtour elimination
constraints. We address this issue by considering a separation procedure, thereby dynamically processing
these constraints to reduce the solution time

(
[3]

)
.

To solve the problem on large-size instances, the present study introduces the use of the Biased
Random-Key Genetic Algorithm (BRKGA) as an alternative solution approach to the exact model. The
BRKGA is known for its effectiveness in solving complex problems, thanks to its ability to efficiently
and quickly explore the solution space. In this context, the BRKGA is applied to generate solutions in
scenarios where the exact approach proves to be too costly in terms of computational time

(
[1], [5]

)
.

The proposed variant of the all-pairs shortest path problem can offer interesting applications in the
context of next-generation networks (e.g., 5G and 6G networks) to optimally deploy, over programmable
data plane, appliances Virtual Network Functions (VNFs). In our study, this variant is used to model
a machine learning assisted network anomaly-based intrusion detection system

(
[9]

)
. Specifically, the

proposed optimization model is used to find the optimal deployment of such VNFs in terms of network
security coverage, guaranteeing pervasive and ubiquitous network protection, and making the network
itself the first line of defense against cyber-attacks. In our model, the graph nodes represent network
nodes, whereas the edges between these nodes denote the physical and virtual connections among the
network elements. The coloring of the nodes is employed to indicate the implementation of specific VNFs.
Each distinct color represents a different type of VNF, reflecting the variety of functions necessary for a
complete network security coverage. The cost associated with each color represents the implementation
cost of a specific VNF. Meanwhile, the weight associated with each edge can represent various aspects,
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essentially quantifying the characteristics or performance of the network connections, such as latency or
bandwidth.

A comprehensive sensitivity analysis has been conducted, by varying the number of vertices, the
number of available colors, and the density of the edges. This main aim was to evaluate the complexity of
the exact model, solved using the general purpose software CPLEX, and to assess the performance and
efficiency of the developed metaheuristic. Furthermore, to validate the proposed mathematical model
and show the effectiveness of the BRKGA, a series of computational tests were carried out on various
synthetic datasets. These datasets were specifically generated to reflect the particular conditions or limit
cases identified in the sensitivity analysis, as well as choosing a median range of values to ensure an
acceptable execution time.
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2 PROBLEM DESCRIPTION
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1 Introduction
Both the team orienteering problem and the arc routing problem have received an increasing amount of
attention from the scientific community during the last decade. In this paper, we consider a hybridisation
of both problems, the so-called team orienteering arc routing problem (TOARP). This problem has
attracted considerable interest among researchers and practitioners due to its ability to effectively model
routing scenarios involving unmanned aerial vehicles (UAVs) or other types of electric vehicles. This paper
makes a significant contribution by addressing an extended and more realistic variant of the TOARP,
which involves considering a destination depot that might be different from the origin one (Figure 1).

Figure 1: Illustrative example of a TOARP with two vehicles.

2 Problem Description
The problem formulation extends the one provided by Archetti et al. [2014] for the TOARP with a single
depot. The objective is to maximise the total collected reward while ensuring that the constraints on
the maximum number of vehicles available and the maximum time each vehicle can employ from its
origin to its destination are not violated. Let V = {0, 1, 2, . . . , n, n + 1} be the set of nodes connected
by arcs, where node 0 is the origin depot and node n + 1 is the destination one. Consider a set of arcs
A = {(i, j)|i ∈ V, j ∈ V, i ̸= j} connecting some of the nodes in V (the network does not have to be
complete). The arcs can be divided into two types: required arcs and reward arcs. The set of required
arcs, Ar ⊆ A, need to be visited in any case, while reward arcs are optional and provide a reward the
first time they are visited (they can be visited more than once, either by the same or by another vehicle,
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but no additional reward can be collected from these additional visits). Let us denote by rij ≥ 0 the
reward associated with each arc (i, j) ∈ A. We have a fleet K = {1, 2, . . . , |K|} of vehicles available. Each
vehicle will depart from the origin depot and needs to reach the destination depot within a maximum
time Tmax > 0.

3 Solving Methodology
The solving methodology introduces a biased-randomised iterated local search (BR-ILS) algorithm to
solve the TOARP. As highlighted in Estrada-Moreno et al. [2019], these algorithms are efficient and
relatively easy to implement, offering a good trade-off between simplicity and performance. Our algorithm
consists of two stages, where we first generate a feasible initial solution using a novel heuristic inspired
by the savings-based heuristic proposed by Panadero et al. [2020] for solving the classical TOP. During
the second phase of our approach, we employ an ILS metaheuristic to enhance the initial solution that
consists of a perturbation phase followed by a local search, repeated until a stopping criterion is met.
Specifically, the perturbation phase is based on a destruction/reconstruction procedure, where the base
solution undergoes a partial destruction and subsequent reconstruction using two perturbation operators.
Subsequently, the ILS employs a local search operator to explore the vicinity of the perturbed solution
and search for improving solutions by employing five distinct local search operators.

4 Computational Experiments
The set of published TOARP benchmark instances proposed by Archetti et al. [2014] has been used to
assess the performance of the proposed BR-ILS algorithm. The benchmark instances consist of four sets
of instances (R, G, D, and T50) considering 2, 3 and 4 vehicles. Computational time limits were set at
60s for class R instances and extended to 300s for classes D and G. Our solving methodology reaches
the optimal solutions for class R. Moreover, it obtains percentage gaps of about 1.41% for class D, and
2.47% for class G with respect to the upper bound reported in the literature. In addition, the proposed
algorithm obtains percentage gaps of about 0.73% for class D; and 1.46% for class G with respect to the
optimal solutions. This results establish the competitiveness of the BR-ILS algorithm, particularly for
instances where the optimal solution is known.

Moreover, the classical set of TOP instances has been modified to validate the capability of solving
scenarios where the start and end depots are distinct. These modifications allow us to compare the
performance of our BR-ILS algorithm with the best-known solutions of the adapted TOP instances.
Thus, we can assess the effectiveness of our algorithm in solving problems with different start and end
depots, while considering the unique characteristics of the TOARP.

5 Conclusions
This study proposes a novel BR-ILS algorithm for solving the TOARP, and an extended version con-
sidering different origin and destination depots for the vehicles. Our methodology combines a biased-
randomisation strategy and an ILS framework to efficiently search for high-quality solutions. The BR-ILS
algorithm has been tested on a set of previously published TOARP instances, and the results demonstrate
the effectiveness of our algorithm in finding competitive solutions within short computational times.
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ABSTRACT
We present a heuristic solution approach for the rolling stock rota-
tion problem with predictive maintenance (RSRP-PdM). The task of
this problem is to assign a sequence of trips to each of the vehicles
and to schedule their maintenance such that all trips can be oper-
ated. Here, the health states of the vehicles are considered to be
random variables distributed by a family of probability distribution
functions, and the maintenance services should be scheduled based
on the failure probability of the vehicles. The proposed algorithm
first generates a solution by solving an integer linear program and
then heuristically improves this solution by applying a local search
procedure. For this purpose, the trips assigned to the vehicles are
split up and recombined, whereby additional deadhead trips can
be inserted between the partial assignments. Subsequently, the
maintenance is scheduled by solving a shortest path problem in
a state-expanded version of a space-time graph restricted to the
trips of the individual vehicles. The solution approach is tested and
evaluated on a set of test instances based on real-world timetables.

KEYWORDS
Rolling stock rotation planning, Predictive maintenance, Heuristic,
State-expanded graph model, Integer linear program

1 INTRODUCTION
Planning rolling stock rotations is essential for the operation of rail
transportation and has been studied in the literature for quite some
time. However, against the backdrop of climate change and the as-
sociated decarbonization of the transport sector, rail transportation
represents a possible solution. It can therefore be assumed that the
volume of freight and passengers transported by rail will continue
to increase, which will also increase the complexity of the train
scheduling. In addition, the availability of sensors and the analysis
of the data they provide by the application of machine learning or
traditional data mining methods enables a predictive scheduling
of the vehicle maintenance. There is therefore a need to develop
solution approaches for the automated dispatching of vehicles that
are capable of integrating predictive maintenance strategies.

1.1 Related Work
The rolling stock rotation problem (RSRP) has already been investi-
gated by a great variety of authors. For an introduction we refer to
[14]. On the one hand, the contributions can be distinguished by the
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applied maintenance regime: Either preventive time- or distance-
based maintenance regulation are employed, see for example [14],
a predictive maintenance strategy is used, e.g., [4, 10, 15, 18], or no
maintenance is considered at all. For an overview on the literature
concerning RSRP we refer to [17]. On the other hand, the presented
approaches can be categorized by the employed solution methods.
The commonly utilized approaches are the direct application of
integer linear programs (ILP), column generation, or the usage of
heuristics, see [16]. In the following, we restrict ourselves to sce-
narios where maintenance is considered and focus on articles that
apply heuristics to RSRP.

There exists a variety of heuristics that already have been applied
to RSRP, but the most common ones are local search algorithms.
Here, already determined solutions are modified to make them fea-
sible or to improve their objective value. In [5], the RSRP is modeled
by a sequence graph in which the trips correspond to nodes and
the arcs indicate if two trips can be performed consecutively. They
try to obtain a feasible solution by solving an ILP and employ a
local search algorithm to include unassigned trips into the vehicle
schedules if only a partial solution could be obtained. This is done
by shifting trips between vehicles. This approach was further devel-
oped by [6], where an initial solution is derived from a stable set of
trip nodes. Another local neighborhood search for the rescheduling
variant of the RSRP was presented by [11]. Their approach is based
on a space-time graph in which the nodes correspond to departure
or arrival events of the trips, while the trips, waiting periods and
deadhead trips are represented by the arcs. They apply a 2-opt
heuristic to vehicles that meet at a station and interchange their
subsequent trips.

Local search approaches are also applied to hypergraph formu-
lations of the RSRP for maintenance scheduling. In [3], the authors
state that the non-maintenance relaxation of their model is not that
hard to solve. Therefore, a local neighborhood search is used to
construct feasible solutions out of rotations that violate the mainte-
nance constraints. This hypergraph model was subsequently used
by other authors. In [1], a backtrack heuristic is given for the inser-
tion of long-term maintenance services into predetermined rota-
tions, while [8] present a heuristic relying on the observation that in
real-life instances maintenance services can usually be performed
during over-night stops. This yields a local neighborhood search
for generating feasible solutions from maintenance-infeasible ones.

But also other types of heuristics have been applied to RSRP. In
[17], the problem is formulated as a resource-constrained shortest
path instance with side constraints in a space-time graph. The au-
thors consider a scenario with short-term maintenance and solve
the problem by applying a resource-constrained shortest path algo-
rithm within a hill climbing heuristic. Finally, [4] present a variety
of heuristics for RSRP with predictive maintenance. These include
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a genetic algorithm and three greedy algorithms that take the re-
maining useful life (RUL) of the considered vehicles into account.

1.2 Predictive Maintenance
The underlying idea of predictive maintenance in this article is the
assumption that maintenance decisions should rely on the predicted
health states of the considered vehicles, which cannot be measured
directly. If we consider for example the doors of the vehicles, then
their conditions must be approximated by either observing the num-
ber of occurring opening-closing cycles or by deriving them from
sensor measurements like the voltage applied to the actuators or
the vibration of the bearings. Since measurement errors occur here
and further uncertainties arise when determining the health states
from these values, e.g., by applying machine learning methods, the
health states must be regarded as uncertain. In addition, the future
load and operating conditions of the doors have to be predicted,
which further increases the arising uncertainty. We therefore as-
sume that the health states must be treated as random variables. The
maintenance decisions are thus based on the probability that these
random variables exceed some predefined threshold indicating a
failure. We will denote this probability as the failure probability.

1.3 Contribution
In this article, we introduce the rolling stock rotation problem with
predictive maintenance (RSRP-PdM), describe a graph model that
approximates this problem, and present a local search heuristic to
solve it. The proposed solution approach is able to handle predictive
maintenance scenarios, where the health states of the vehicles are
considered to be random variables and themaintenance is scheduled
based on the failure probability of the vehicles. However, it can
easily be adapted to handle distance- or time-based maintenance
strategies. It also allows non-linear functions for modeling the
degradation of the health states. Finally, the algorithm is tested and
evaluated on a set of instances based on real-world timetables.

2 PROBLEM FORMULATION
In RSRP-PdM, we are given a set of vehiclesV , where each vehicle
𝑣 ∈ V possesses a health state 𝐻𝑣 ∈ R. Here, 𝐻𝑣 = 1 indicates
that the vehicle is as good as new, while 𝐻𝑣 ≤ 0 corresponds
to a breakdown of the vehicle. These health states are random
variables to reflect their uncertainty and are distributed by a fam-
ily of probability distribution functions Π with parameter space
Θ ⊆ R𝑛 , i.e., we have 𝐻𝑣 ∼ Π𝜃 ∈ Π for some 𝜃 ∈ Θ. 𝐻𝑣 represents
all possible health states of 𝑣 with their respective probability of oc-
currence. Next, each 𝑣 ∈ V has an initial state 𝐻0

𝑣 ∼ Π𝜃0 , described
by a 𝜃0 ∈ Θ. During the operation of trips and other services, e.g.,
deadhead trips, the conditions of the vehicles deteriorate, which is
expressed by updating the parameters of their health states.

Furthermore, L is the set of all considered locations and K is a
finite time horizon. Moreover, we are given a timetable T consisting
of individual trips that need to be operated. To each trip 𝑡 ∈ T we
associate a departure location 𝑙𝑑𝑡 ∈ L and a departure time 𝑘𝑑𝑡 ∈ K ,
as well as an arrival location 𝑙𝑎𝑡 ∈ L and an arrival time 𝑘𝑎𝑡 ∈ K . Ad-
ditionally, each trip possesses a degradation function Δ𝑡 : Θ→ Θ
altering the parameters of the health state of the vehicle operating 𝑡 .
We assume Δ𝑡 to be continuous and monotonically increasing, i.e.,

∇𝑒𝑖Δ𝑡 (𝜃 ) ≥ 0 for all 𝑖 ∈ {1, . . . , 𝑛} and 𝜃 ∈ Θ, but we do not re-
quire it to be linear. Note that we associate similar degradation
functions with the other activities of the vehicles, i.e., with wait-
ing at stations, deadhead trips, and maintenance services. Finally,
𝑛𝑡 ∈ N determines how many vehicles are required to operate 𝑡 .

We associate costs with each of the possible operations, i.e., trips,
waiting, deadhead trips, and maintenance services, and assume that
breakdown costs arise when a vehicle failure occurs.

Next, we call a vehicle rotation balanced if the number of vehicles
at each location 𝑙 ∈ L is equal at the beginning and at the end of
the considered time horizon. This balancedness is important as it
gives rise to schedules that can be repeated on a weekly basis.

The task of RSRP-PdM is then to assign a sequence of trips,
deadhead trips, and maintenance operations to each vehicle such
that all given trips are operated and the resulting rotations are
balanced. Here, the objective is to find a solution with minimum
total costs, taking into account the operating costs, maintenance
costs, and the expected costs of vehicle failures.

3 UTILIZED GRAPH MODELS
The proposed algorithm relies on two different graph models, that
are presented in this section. The first is the space-time graph, which
is widely used in the literature to model the RSRP. We present it
briefly in the following and refer to [7] for a more detailed de-
scription. Afterwards, we introduce the state-expanded event-graph,
which is a parameter-expanded version of the space-time graph
and has been utilized in [13].

3.1 The Space-Time Graph
Given a RSRP-PdM instance as described in Section 2, the nodes
of the space-time graph represent the departure and arrival events
of the trips contained in T . Each trip 𝑡 ∈ T therefore induces two
nodes 𝑣𝑑𝑡 = (𝑙𝑑𝑡 , 𝑘𝑑𝑡 ) and 𝑣𝑎𝑡 = (𝑙𝑎𝑡 , 𝑘𝑎𝑡 ), and corresponds to the arc
𝑎𝑡 = (𝑣𝑑𝑡 , 𝑣𝑎𝑡 ). By iterating over all trips and collecting the resulting
nodes and arcs, we obtain the set of departure nodes 𝑉+, the set
of arrival nodes 𝑉− , and the set of trip arcs 𝐴T . Afterwards, we
add artificial start and end nodes for each location, i.e., 𝑣0

𝑙
= (𝑙, 0)

and 𝑣∞
𝑙

= (𝑙, 𝑘max) for each 𝑙 ∈ L, where 𝑘max B max{K}. These
nodes form the sets of the start nodes 𝑉0 and the end nodes 𝑉∞.
Thus, we define the node set to be 𝑉 B 𝑉0 ∪𝑉+ ∪𝑉− ∪𝑉∞.

Next, we construct the arcs of the graph. First, we consider arcs
representing that a vehicle waits at its current location. For this pur-
pose, the nodes of each location 𝑙 ∈ L are sorted in time-ascending
order and an arc is added between each pair of time-consecutive
nodes. This yields 𝐴𝑊 . Finally, we construct the deadhead arcs 𝐴𝐷 .
Therefore, we iterate over all nodes 𝑣1 = (𝑙1, 𝑘1) ∈ 𝑉0 ∪ 𝑉− and
add an arc to each 𝑣2 = (𝑙2, 𝑘2) ∈ 𝑉+ ∪𝑉∞ with 𝑙1 ≠ 𝑙2, which has
the smallest 𝑘2 among the nodes at 𝑙2 such that 𝑘1 + 𝑘 (𝑙1, 𝑙2) ≤ 𝑘2,
where 𝑘 (𝑙1, 𝑙2) is the time required to travel from 𝑙1 to 𝑙2.

Combining these arc sets yields 𝐴 B 𝐴T ∪ 𝐴𝑊 ∪ 𝐴𝐷 and
𝐺𝑆𝑇 = (𝑉 ,𝐴) is the resulting space-time graph. Note that we assign
each arc the costs associated with its corresponding operation.

3.2 The State-Expanded Event-Graph
The space-time graph just described in Section 3.1 is well suited
to determine assignments of trips to vehicles, however it is not
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trivial to incorporate maintenance constraints into it. Usually, these
constraints are modeled by considering the vehicle rotations as
resource-constrained paths, where a maintenance service is re-
quired when a certain resource threshold is exceeded and a re-
source consumption is associated with each of the arcs. The arising
problem becomes even more complicated if we consider non-linear
degradation functions, i.e., non-linear resource consumption. How-
ever, this should not be excluded, as mechanical components gener-
ally exhibit non-linear deterioration behavior. Therefore, we utilize
the state-expanded event graph 𝐺𝑆𝐸 , which provides a linear ap-
proximation to this non-linear problem.

Given a discretization D of the parameter space Θ, i.e., a finite
set D ⊆ Θ, we construct the nodes of 𝐺𝑆𝐸 by creating multiple
copies of the nodes in𝐺𝑆𝑇 for each 𝜃 ∈ D. This yields the node set
𝑉 ′ B {(𝑙, 𝑘, 𝜃 ) | (𝑙, 𝑘) ∈ 𝑉 (𝐺𝑆𝑇 ), 𝜃 ∈ D} of 𝐺𝑆𝐸 .

Next, we generate the arcs. As in the construction of 𝐺𝑆𝑇 , each
arc corresponds to a particular operation and the idea is that the
arcs implicitly model the degradation, i.e., the resource consump-
tion, of this operation. A vehicle traversing arc 𝑎 = (𝑣1, 𝑣2) from
𝑣1 = (𝑙1, 𝑘1, 𝜃1) to 𝑣2 = (𝑙2, 𝑘2, 𝜃2) has a health state distributed by
Π𝜃1 before performing the task corresponding to 𝑎 and a health
state distributed by Π𝜃2 afterwards. Here, the update of the health
state parameters is given by the degradation function Δ𝑎 of the arc,
which is the degradation function of the associated operation.

But we do not necessarily have Δ𝑎 (𝜃1) ∈ D, so there does not
have to exist a head for 𝑎 in 𝑉 ′. To resolve this problem, we define
the following function that rounds to the nearest element of D:

⌊·⌉D : Θ→ D, ⌊𝜃⌉D B argmin𝜑∈D
{∥𝜃 − 𝜑 ∥2}

Using this function, we construct the arcs of 𝐺𝑆𝐸 by iterating
over its nodes and copying the outgoing arcs of their counterparts
in 𝐺𝑆𝑇 . Let therefore 𝑣1 = (𝑙1, 𝑘1, 𝜃1) be a node in 𝐺𝑆𝐸 , and let
𝑢1 = (𝑙1, 𝑘1) be the corresponding node in 𝐺𝑆𝑇 . Furthermore,
consider any arc 𝑎 = (𝑢1, 𝑢2) ∈ 𝛿+ (𝑢1), for some 𝑢2 = (𝑙2, 𝑘2).
Then, we determine 𝜃2 B ⌊Δ𝑎 (𝜃1)⌉D and add an arc from 𝑣1 to
𝑣2 = (𝑙2, 𝑘2, 𝜃2). We repeat this procedure for all arcs originating
from𝑢1 and subsequently for all nodes of𝐺𝑆𝐸 . This results in the arc
set𝐴′ of𝐺𝑆𝐸 consisting of trip arcs, waiting arcs, and deadhead arcs.
Note that this construction leads to multiple arcs corresponding to
each of the trips.

Next, we introduce maintenance arcs. Their construction is sim-
ilar to the construction of the deadhead arcs for the space-time
graph and they are generated for every arrival node in 𝐺𝑆𝐸 . The
difference in the construction is that instead of the time required
to travel from location 𝑙1 to 𝑙2, the sum of the times necessary to
travel from 𝑙1 to the workshop, carry out the maintenance service
there and then travel to 𝑙2 is now considered. Moreover, as in the
generation of the other arcs of 𝐺𝑆𝐸 , we apply ⌊Δ𝑀 (·)⌉D to the
parameters of the tail node of each maintenance arc, where Δ𝑀 is
the degradation function associated with the maintenance activities.
This resets the parameters to values that are as good as new.

Finally, the costs of the arcs in the state-expanded event-graph
are equal to the costs of their corresponding arcs in the space-time
graph, but we add the expected failure costs to the trip arcs. There-
fore, we need to determine the failure probability of the vehicles
during the operation of the trips. Consider any arc 𝑎 = (𝑣1, 𝑣2) ∈ 𝐴′
corresponding to some trip 𝑡 ∈ T . Let 𝜃1, 𝜃2 be the parameters of
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Figure 1: Example of a state-expanded event-graph adapted
from [13].

𝑣1, 𝑣2 respectively, then traversing 𝑎 depicts that a vehicle 𝑣 with
health state 𝐻𝑣 ∼ Π𝜃1 is operating 𝑡 and its health state gets up-
dated to 𝐻𝑣 ∼ Π𝜃2 due to the occurring degradation. Thus, the
failure probability of the vehicle is given by the probability that
𝐻𝑣 exceeds the given failure threshold. Assuming that a break-
down occurs when 𝐻𝑣 falls below zero, we need to determine
P[𝐻𝑣 ≤ 0] =

∫ 0
−∞ Π𝜃2 (𝑥) 𝑑𝑥 . The expected failure costs are then

calculated by multiplying this value with the breakdown costs.
An example of a state-expanded event-graph is given in Figure 1,

where the layers of nodes having the same parameter values are
shaded in gray. The waiting and deadhead arcs are depicted in black,
while the trip arcs are colored red. Traversing these arcs decreases
the parameter by 0.5, while the maintenance arcs (blue) reset it to
one. Note that a projection onto the space-time plane, i.e., ignoring
the parameters, yields the underlying space-time graph.

4 ALGORITHM
Now, we present our solution approach for RSRP-PdM. This is based
on the same observation as made in [3], where the authors state that
the non-maintenance relaxation of RSRP is not that hard to solve.
Thus, we first solve the RSRP ignoring the maintenance constraints
and postpone the service scheduling to a subsequent step.

4.1 Generating Initial Solutions
To solve the non-maintenance relaxation of RSRP-PdM, we need to
assign the trips to the vehicles in a cost-minimal way such that each
trip is operated by the required number of vehicles and the vehicle
balance of each location is even. Such an assignment corresponds
to a flow in the space-time graph, which sufficiently covers the trip
arcs and can be determined by solving ILP formulation (NMF).

In this formulation, 𝑐𝑎 ∈ R≥0 are the costs associated with the
arcs of the underlying space-time graph, and the objective func-
tion (1) aims atminimizing the total costs of all contained operations.
Constraints (2) ensure the flow conservation and constraints (3)
guarantee the balancedness of the resulting vehicle rotations. Con-
straints (4) depict the initial positioning of the vehicles in the be-
ginning of the scenario, where 𝑛𝑙 ∈ N0 is the number of vehicles
located at 𝑙 ∈ L. Trip coverage is enforced by constraints (5), since
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the required number of vehicles is assigned to each trip. Finally, the
domains of the variables are defined in (6).

(NMF) min
∑︁
𝑎∈𝐴

𝑐𝑎𝑥𝑎 (1)

s.t.
∑︁

𝑎∈𝛿+ (𝑣)
𝑥𝑎 =

∑︁
𝑎∈𝛿− (𝑣)

𝑥𝑎 ∀𝑣 ∈ 𝑉 \ {𝑉0 ∪𝑉∞} (2)

∑︁
𝑎∈𝛿+ (𝑣0

𝑙
)
𝑥𝑎 =

∑︁
𝑎∈𝛿− (𝑣∞

𝑙
)
𝑥𝑎 ∀𝑙 ∈ L (3)

∑︁
𝑎∈𝛿+ (𝑣0

𝑙
)
𝑥𝑎 ≤ 𝑛𝑙 ∀𝑙 ∈ L (4)

𝑥𝑎𝑡 = 𝑛𝑡 ∀𝑡 ∈ T (5)
𝑥𝑎 ∈ N0 ∀𝑎 ∈ 𝐴 (6)

The solution of (NMF) represents a flow in the space-time graph
given by a set of paths. Each path corresponds to the tasks assigned
to one of the vehicles and consists of a sequence of trips connected
by waiting or deadhead arcs. Since maintenance is not considered
here, the path of each vehicle is determined by the assigned trips
together with its origin and destination, as these have to be con-
nected by the most cost-effective paths consisting of waiting and
deadhead arcs.

Note that, the value of an optimal solution to (NMF) is a lower
bound to the objective value of RSRP-PdM, since the costs can only
increase if the deterioration of the vehicles, the associated expected
failure costs and their maintenance are taken into account.

4.2 Scheduling Maintenance
After solving the non-maintenance relaxation of RSRP-PdM, we
need to incorporate the maintenance services into the schedules
of the individual vehicles. Therefore, we present a method that
approximates the parameters of the health states of the vehicles
and schedules the maintenance accordingly.

Recall that given a subset of trips 𝑆 ⊆ T together with an origin
𝑙0 ∈ L and a destination 𝑙∞ ∈ L, we can reconstruct the correspond-
ing path in 𝐺𝑆𝑇 by sorting the trips in time-ascending order and
connect the respective trip arcs by paths consisting of waiting and
deadhead arcs. These paths will be termed idle paths in the follow-
ing. We now transfer this idea to the state-expanded event-graph.
Due to the construction of 𝐺𝑆𝐸 , based on a discretization D, we
may have multiple arcs corresponding to each of the trips. Consider
a trip 𝑡 ∈ T that starts at (𝑙𝑑𝑡 , 𝑘𝑑𝑡 ), then we added an outgoing arc
corresponding to 𝑡 to each node in {(𝑙𝑑𝑡 , 𝑘𝑑𝑡 , 𝜃 ) ∈ 𝑉 (𝐺𝑆𝐸 ) | 𝜃 ∈ D}.
In the following, we will denote the set of arcs corresponding to
a trip 𝑡 ∈ T by 𝐴(𝑡). Thus, given a subset of trips 𝑆 ⊆ T and
𝑙0, 𝑙∞ ∈ L, we can determine a feasible schedule by selecting one
arc from each 𝐴(𝑡), for all 𝑡 ∈ 𝑆 , and connecting them by idle paths.
Note that the idle paths in 𝐺𝑆𝐸 can also contain maintenance arcs.
In addition, the desired path must take into account the parame-
ters of the initial health state of the assigned vehicle, i.e., 𝜃0 ∈ Θ,
therefore it has to start at 𝑣0 = (𝑙0, 0, ⌊𝜃0⌉D ) ∈ 𝑉 (𝐺𝑆𝐸 ).

To find such a path, we first restrict 𝐺𝑆𝐸 to the arcs that are
necessary for a vehicle that starts with parameters 𝜃0 at 𝑙0, operates
the trips in 𝑆 and arrives at 𝑙∞. We then determine a shortest path
in this restricted graph. This graph will be referred to as 𝐺𝑆𝐸

��
𝑟 , for

𝑆1: 𝑡1 𝑡3, 𝑡4, 𝑡6 𝑡8 𝑡9, 𝑡11 𝑡15, 𝑡17
𝑆2: 𝑡2, 𝑡5, 𝑡7 𝑡10, 𝑡12 𝑡13, 𝑡14 𝑡16

Figure 2: Example of the exchangeable parts of two schedules.

𝑟 = (𝑆, 𝑙0, 𝑙∞, 𝜃0), and can be obtained from 𝐺𝑆𝐸 as follows: First,
we delete all trip arcs that belong to any 𝐴(𝑡), for 𝑡 ∉ 𝑆 . Then, we
remove all arcs that are not contained in an idle path that connects
two of the remaining trip arcs. Next, all arcs that have a time overlap
with one of the trip arcs are deleted. Finally, we add a sink node
𝑣𝑠 to 𝐺𝑆𝐸

��
𝑟 and add artificial arcs with costs equal to zero from all

nodes in {𝑣 = (𝑙∞, 𝑘max, 𝜃 ) | 𝜃 ∈ D} to 𝑣𝑠 .
Due to the construction of 𝐺𝑆𝐸

��
𝑟 , a shortest 𝑣0-𝑣𝑠 -path thus

corresponds to a minimum-cost schedule for 𝑟 = (𝑆, 𝑙0, 𝑙∞, 𝜃0) w.r.t.
the applied discretization D. Note that the approximation quality
depends on the granularity of D. In the following, we assume that
a solution 𝑥 to the RSRP without maintenance is given by a set of
schedules, where the schedule of each vehicle 𝑣𝑖 can be represented
as 𝑠𝑖 = (𝑆𝑖 , 𝑙0,𝑖 , 𝑙∞,𝑖 ), for 𝑖 ∈ {1, . . . , |V|}. Then, we can derive
an approximate solution to RSRP-PdM from 𝑥 by scheduling the
maintenance of each vehicle, i.e., by determining a shortest path
in each 𝐺𝑆𝐸

��
𝑟𝑖
, for 𝑟𝑖 = (𝑠𝑖 , 𝜃0,𝑖 ). We will refer to this procedure by

scheduleMaintenance(𝑥,𝐺𝑆𝐸 ).

4.3 Improving Schedules by Swapping Trips
After presenting an approach to determine a solution for the non-
maintenance relaxation of RSRP-PdM and a procedure for incorpo-
ratingmaintenance into the resulting vehicle schedules, we describe
a local search algorithm that aims to improve a given solution by
swapping parts of the vehicles’ schedules.

Suppose we are given a non-maintenance solution 𝑥 consisting
of vehicle schedules 𝑠𝑖 = (𝑆𝑖 , 𝑙0,𝑖 , 𝑙∞,𝑖 ), for 𝑖 ∈ {1, . . . , |V|}. Then,
we randomly select two vehicles 𝑣1, 𝑣2 ∈ V and consider their
corresponding trip sets 𝑆1, 𝑆2 ⊆ T . First, we sort 𝑆1 and 𝑆2 in
ascending order of their departure times. Afterwards, we iterate
over time-consecutive pairs (𝑡1,𝑖 , 𝑡1,𝑖+1) of 𝑆1 and (𝑡2, 𝑗 , 𝑡2, 𝑗+1) of 𝑆2
and check if it is possible to operate 𝑡2, 𝑗+1 after 𝑡1,𝑖 and 𝑡1,𝑖+1 after
𝑡2, 𝑗 . If this is the case, (𝑖, 𝑗) is a possible swap position. To find all
swap positions, we next examine whether a swap is possible at the
beginning or after the end of the schedules. Therefore, we check
whether there are trips of 𝑆1 that can be operated before the first
trip of 𝑆2 and if it is possible to reach them from 𝑙0,2, i.e., the origin
of 𝑣2. The same is then repeated for 𝑆2. Analogously, we check
whether it is possible to swap trips after the last trip of 𝑆1 or 𝑆2.

These swap positions separate 𝑆1 and 𝑆2 into two ordered collec-
tions of equal cardinality. Their contained subsets of trips having
the same indices can be exchanged without violating the feasibility
of the resulting schedules. This procedure will be referred to as
getSwappingParts(𝑆1, 𝑆2) and an example is illustrated in Figure 2.
Here, the trips contained in blocks standing underneath each other
can be exchanged arbitrarily and both resulting schedules would
be feasible. For example, it would be possible to swap {𝑡9, 𝑡11} and
{𝑡10, 𝑡12}, or to shift 𝑡8 to 𝑆2.

Since a swap can occur before the first trip of a schedule, it is
possible that the initial departure location of a schedule is changed.
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It could therefore be advisable to assign this trip sequence to an-
other vehicle at another origin, which can reach the new depar-
ture location with a less expensive deadhead trip. We thus de-
fine matchVehiclePositions(𝑥), which determines a matching
between the vehicles and the schedules of 𝑥 . For this purpose, we
calculate the minimum costs of the idle paths that connect the
origins of the vehicles with the initial departure location of the
trip sequences, provided they can be reached in time. Then, we
assign the vehicles to the sequences according to the solution of
the minimum-cost matching. This yields the updated origins 𝑙0,𝑖
of the schedules. To ensure the balancedness, we then solve an-
other minimum-cost matching, which assigns the sequences to the
destinations of the vehicles such that each location occurs as a
destination exactly as often as it was employed as an origin. This
results in the updated destinations 𝑙∞,𝑖 .

Thus, given a non-maintenance solution 𝑥 , we define the proce-
dure multiSwap(𝑥) as follows: First, we randomly select two sched-
ules 𝑆1 and 𝑆2 contained in 𝑥 and apply getSwappingParts(𝑆1, 𝑆2)
to determine the subsets of trips that can potentially be swapped
between them. We then decide at random for each of the corre-
sponding parts which part is assigned to 𝑆1 and 𝑆2, respectively.
This results in a modified solution 𝑦. Subsequently, we reassign the
vehicle origins and destinations to the trip sequences by applying
matchVehiclePositions(𝑦) and obtain the solution 𝑧, which is
the result of the multi-swap procedure.

Note that multiSwap(𝑥) is a generalization of 2-opt, since it is
obtained by selecting a certain swap position and interchanging all
subsequent trip parts, while leaving the parts before unchanged.

4.4 The Resulting Algorithm
Combining the procedures presented throughout this section, yields
the multi-swap heuristic for RSRP-PdM, see Algorithm 1. First, for-
mulation (NMF) is solved to generate an initial solution. If this
formulation is infeasible, there cannot be a solution to RSRP-PdM
since the ILP solves the non-maintenance relaxation of the prob-
lem. Subsequently, multiSwap(𝑥) is utilized to modify the cur-
rent best solution and thus to explore the solution space, while
scheduleMaintenance(𝑥,𝐺𝑆𝐸 ) is employed to schedule the main-
tenance based on the approximated health states of the vehicles.
The algorithm is stopped when the given time limit is reached.

5 COMPUTATIONAL RESULTS
In this section, we present the results of the proposed solution
approach to RSRP-PdM and compare them to the LP-based lower
bound given in [13]. This lower bound is based on a relaxation of an
ILP in which the vehicle rotations are represented by paths in 𝐺𝑆𝐸
and collectively cover each trip 𝑛𝑡 times. The algorithm was tested
on the data set provided in [12], which originates from genuine
timetables. The characteristics of the individual instances are listed
in the first four columns of Table 1. All instances are based on a rail
network with a length of 4,221 km and three maintenance facilities.
The health states are assumed to be distributed by two-parameter
normal distributions and the trips possess non-linear degradation
functions. The considered components are the doors of the vehicles,
which are not safety-relevant. Thus, the vehicles can continue to
be operated even after a failure, but this causes additional costs.

Algorithm 1:Multi-swap heuristic for RSRP-PdM
Data: RSRP-PdM instance I, discretization D
Result: Solution to I or infeasible

1 𝑥 ← solution to (NMF)
2 if 𝑥 is infeasible then
3 return infeasible
4 end
5 𝐺𝑆𝐸 ← state-expanded event-graph based on D
6 𝑠𝑜𝑙 ← scheduleMaintenance(𝑥,𝐺𝑆𝐸 )
7 repeat
8 𝑦 ← multiSwap(𝑥)
9 𝑧 ← scheduleMaintenance(𝑦,𝐺𝑆𝐸 )

10 if 𝑣 (𝑧) < 𝑣 (𝑠𝑜𝑙) then
11 𝑥 ← 𝑦

12 𝑠𝑜𝑙 ← 𝑧

13 end
14 until time limit is reached
15 return 𝑠𝑜𝑙

It is assumed that the doors perform 1,500 opening-closing cycles
before failing and undergo zero to four cycles at each stop of a trip.

5.1 Computational Setup
We performed all computations on a machine with Intel(R) Xeon(R)
Gold 6342 @ 2.80GHz CPUs, eight cores and 64GB of RAM. The
algorithmwas implemented in Julia v1.9.1 [2] and Gurobi v10.0.2 [9]
was used to solve (NMF) and the LPs for the lower bounds. All
computations had a time limit of one hour.

5.2 Results
The results of the conducted computational experiments are given
in the last five columns of Table 1. These contain the value of
the best solution and the best lower bound for each instance, the
resulting gap between these values, the gap after 180 seconds, and
the time when the best solution was found. The obtained gaps show
the effectiveness of the proposed algorithm, as they vary between
0 and 3.5% and are less than 4.3% after just 180 seconds.

The progression of the gap between the best heuristic result and
the lower bound over time is quite similar across all instances and
depicted in Figure 3. The majority and most significant improve-
ments were achieved during the first 400 seconds. Afterwards, the
solution value could still be enhanced, but the gained improvements
decreased, and after 30 minutes almost no further progress could be
recorded. An exception to this behavior is instance T5, where the
best solution was found after just 14 seconds with a gap of 0.01%.
These outcomes emphasize that the presented heuristic not only
generates high-quality solutions, but is also capable of finding good
results in a short time.

6 CONCLUSION
In this article we presented a heuristic solution approach to RSRP-
PdM. We first defined the problem and then introduced two graph
models: The first is used to model the non-maintenance relaxation
of RSRP-PdM, while the other provides an approximation to the
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Table 1: Characteristics and results for the test instances.

Instance Trips Destinations Vehicles Solution Value Lower Bound Gap in % Gap after 180 s in % Running Time in s
T1 566 8 6 269,728.67 261,432.23 3.08 3.08 3,517
T2 608 10 7 436,955.86 428,348.63 1.97 2.73 2,988
T3 636 15 16 1,427,088.22 1,380,028.25 3.30 4.28 3,597
T4 679 9 8 196,410.58 189,576.54 3.48 3.48 3,387
T5 813 16 14 327,804.96 327,770.13 0.01 0.01 14
T6 919 17 29 2,355,022.71 2,290,595.54 2.74 3.45 3,545

Figure 3: Gaps of all instances over time.

problem itself. Then, we discussed the individual steps of the pro-
posed algorithm. These consist of an ILP to find an initial solution
to the non-maintenance relaxation, a method for approximate main-
tenance scheduling and finally a local search procedure based on
the multiple random swapping of trips. The effectiveness of the pro-
posed algorithm is then demonstrated by conducting computational
experiments on a set of test instances.

Possible next steps for future research are a combination of the
presented approach with simulated annealing as well as the investi-
gation of othermeta-heuristics. Furthermore, it would be interesting
to examine whether it is more effective to employ these heuristics
on the non-maintenance relaxation and postpone the maintenance
scheduling to a later step, or whether it is advantageous to apply
these approaches directly to the state-expanded event-graph.
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The optimal transport (OT) is one the most paradigmatic among network optimization problems. Solving
to optimality OT implies finding the minimum cost transportation plan that moves quantities of a single
item from a set of sources M to a set of destinations N . A connection among any pair of a source i
and a destination j exists and is characterized by a unitary transportation cost cij . Given respectively
ai and bj the item quantities available at the sources and requested by destinations, the problem can be
formulated by means of the following LP model [3].

min
∑

i∈M

∑

j∈N

cijxij (1)

∑

j∈N

xij = ai ∀ i ∈ M (2)

∑

i∈M

xij = bj ∀ j ∈ N (3)

xij ≥ 0 ∀ i ∈ M, j ∈ N. (4)

Since [3], a large literature florished on OT and primal network simplex (NS) algorithms, e.g., [5], for the
minimum cost flow problem (that generalizes OT) were denoted as the best performing approaches [4] for
OT (performing also much better than LP-based algorithms). The interest in the OT has been renewed
recently because of machine learning and artificial intelligence applications requiring the computation of
the distance between pairs of images or probability distributions with source and destination quantities
being pixel intensities or probability measures respectively. A set of image processing instances, called
DOTmark, is nowadays the benchmark for OT and the NS of [2] was indicated in [7] as the best performing
algorithm for those instances. Interior point based approaches, still less efficient than [2], were also
proposed, see, e.g., [8].

Very recently, a novel exact algorithm for solving OT, called iterated Inside Out (IIO), has been pro-
posed [1]. The strength of this new method relies on the fact that potentially many pivoting operations
are performed for each computation of dual multipliers and reduced costs. IIO requires in input a basic
feasible solution and is composed by two phases that are iterated until an optimal basic feasible solution is
found. The first ‘inside’ phase progressively improves the current basic solution by increasing the value of
several non-basic variables with negative reduced cost and typically outputs a non-basic feasible solution
corresponding to an interior point of the constraints’ set polytope. The second ‘out’ phase operates in
the opposite direction by iteratively setting to zero several variables until a new improved basic feasible
solution is reached. The basic version of IIO combined with the shielding neighborhood [6] shows up to
be approximately twice faster than [2] on the DOTmark instances.

Here, we propose a variant of IIO devised for solving much more efficiently the DOTmark instances
w.r.t. [1]. The new version of IIO solves the DOTmark instances exploiting the characterizing structure
of the transportation costs: these costs depend on the couple of indexes (i, j) of the related problem
variables and present strong regularity in the way they increase or decrease according to a change of
index i or j. Given the dual multipliers of the current basic solution, the described structure of costs
enables the algorithm to predict from scratch the positivity of a large set of reduced costs correspondingly
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avoiding their computation. The new version of IIO computes, at each iteration, an ad-hoc subset of
neighbor reduced costs that guarantees the optimality of the final solution but strongly reduces the total
number of reduced costs to be computed. Let denote this neighbor subset as the DOTmark neighborhood
(DM-NGH).

Computational experiments revealed DM-NGH to be very effective but characterized by a long-tail effect,
namely a large subset of iterations (the final ones) showing marginal improvement of the objective function
value. To overcome this phenomenon, we designed a second new neighborhood of a current basic solution
as follows. For each variable xi,j of a DOTmark instance with image size L, the closest variables to xi,j in
terms of transportation cost are variables xi+1,j , xi−1,j , xi,j+1, xi,j−1, xi+L,j , xi−L,j , xi,j+L and xi,j−L.
We denote by 8 − set(xi,j) the corresponding subset of variables, and by 8-vars neighborhood (8V-NGH)
the union of all 8−set(xi,j) subsets over all basic variables xi,j . Note that 8V-NGH nearly always contains
at least one variable with negative reduced cost. The new IIO for DOTmark instances first applies DM-
NGH until the improvement of the objective function is regularly above a fixed threshold, then applies
8V-NGH until negative reduced costs are found, finally completes the optimization reapplying DM-NGH
(often just to prove optimality).

In Table 1, we report a computation time comparison of three versions of IIO plus Bonneel’s NS [2] on
the DOTmark instances considered in [7]. All experiments ran as single thread processes on a laptop
with a 11th Gen Intel Core i7-1165G7 2.80GHz × 8 processor and 16GB of RAM, and running Ubuntu
20.04.5 LTS. Table 1 shows that the best version of IIO algorithm for the DOTmark instances strongly
outperforms the current state-of-the-art approaches.

IIO with shielding IIO with DM-NGH IIO with DM-NGH + 8V-NGH Bonneel’s NS
image size [sec.] [sec.] [sec.] [sec.]

32x32 0.13 0.10 0.09 0.22
64x64 2.41 1.45 1.18 5.79

128x128 175.74 41.67 23.87 335.24

Table 1: Algorithms performances on DOTmark instances
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The graph burning problem studies the speed at which information can spread in graphs across their
edges. Graph burning is carried out as a step-wise process on an undirected graph G = (V, E), |V | = n,
where in every step first, every burning vertex spreads the fire to its entire neighbourhood, before second,
a new source of fire is ignited. If (v1, . . . , vn) is a sequence of vertices, such that, when choosing vi as
the i-th source of fire, G can be burned within t time steps, it is called a burning sequence for G. The
aim is to choose the new sources of fire in a way that minimises the length of a burning sequence. The
minimum number of steps necessary to ignite every vertex in G is denoted by the burning number, b(G).
For paths Pn and cycles Cn it is known that b(G) = ⌈√

n⌉. The burning number conjecture sattes that
this value is an upper bound for all graphs.

In this talk, we discuss a recently introduced variant of the problem, k-slow burning, in which every
burning vertex can only ignite up to k of its neighbours in each step of the burning process. We consider
the complexity of computing the corresponding graph parameter, the k-slow burning number bs(k, G).

We prove NP-hardness on multiple graph classes, most notably the class of graphs of radius 1, where
normal graph burning is solvable in polynomial time. Furthermore, we show that among all connected
graphs on n vertices, the k-slow burning number of the star graph Sn−1 is maximal for k ∈ {1, 2} and
asymptotically maximal for fixed k ≥ 3. This observation leads to a generalisation of the burning number
conjecture in regard to k-slow burning:

bs(k, G) ≤ max{bs(k, Pn), bs(k, Sn−1)}

for all connected graphs. By solving a mixed integer program for all relevant cases, we could confirm this
conjecture for all graphs with at most 20 vertices. By the same approach the burning number conjecture
could be verified for all graphs with at most 25 vertices.
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We introduce a new variant of the well-known Travelling Salesman Problem (TSP) where each node is
associated to a color, or cluster as in the Generalized Travelling Salesman Problem (GTSP). For that
reason, the new problem is called Multi-Color Travelling Salesman Problem (MCTSP). We assume to
work on a directed graph with costs associated with arcs. There are n nodes. Node 1 has its own color
(say white), representing home and being the start and end of the route for a vehicle. For each color k,
we are given with two positive numbers αk and βk such that 0 ≤ αk ≤ βk ≤ n. The aim of the MCTSP
is to find a minimum-cost Hamiltonian cycle visiting each node once, as in the classical TSP, with the
additional requirement that the number of nodes between two nodes of a color k must be at least αk and
at most βk.

The MCTSP is motivated by a more-complex and real-world problem called the Overnight Security
Service Problem (OSSP) and heuristically addressed in [6]. The OSSP consists in optimizing the routes
of a fleet of guards that should check buildings (customers) in an urban area for security reasons. The
guards have to take care of three different types of services which are radically different. The first one
is called ticket and is the simplest and cheapest service, as well as the most required since one (and
only one) passage is necessary during the night. The second one is called watch and is a more careful
check, requiring access to the building. It is repeated as many times as the customer requires, and the
inspection time is recorded by a mechanical control system. The third type of service is called alarm and
is disregarded in this paper since it rarely occurs and each security company manages it in a different
way. This paper addresses the design of the a priori routes for the guards of the company to serve the
tickets and the watches. In order to reduce the costs of the solution and to guarantee a better service to
customers, the routes should be planned in advance.

The MCTSP is the particular case of the OSSP where we consider only one guard (vehicle) and the
time requirement between two consecutive visits to a customer (building) is relaxed to only consider the
number of other visits. It is related to the Black-and-While Travelling Salesman Problem introduced
in [2], where a Hamiltonian tour is feasible when the number of white visits between two consecutive
black visits and the time distance are upper bounded. See e.g. [4] for other variants of the well-known
Travelling Salesman Problem (TSP). To the best of our knowledge the MCTSP is not mathematically
modelled, nor solved, in the literature.

The MCTSP is closely related to the Capacitated Vehicle Routing Problem (CVRP) with Unit-
Demand customers, where one limits the number of customers between two consecutive visits to the
depot. It is also related to the CVRP with lower bound capacities [3] where one is also interested in
visiting a minimum number of customers along each route. This relation inspires a formulation for the
MCTSP based on multi-star like inequalities, suggesting a branch-and-cut approach for solving MCTSP
to optimality.

Another related problem is the one-commodity pickup-and-delivery TSP with split demands, where
a customer may need to be visited several times. This other relation motivates another formulation for
the MCTSP in the line of the branch-and-cut approach in [1, 5].

In this paper we propose several mixed integer linear programming models and analyze computational
results to solve instances to optimality.
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ABSTRACT

Assume that a proper coloring (PC) is available for a given
undirected graph 𝐺 = (𝑉,𝐸). Assume as well that all ver-
tices in any of the color classes at hand are simultaneously
dominated by a same vertex. Such a PC is then called a
dominated coloring (DC) of 𝐺 and the least number of color
classes a DC might have, 𝜒𝑑𝑜𝑚(𝐺), is called the dominated
chromatic number of 𝐺. In turn, the problem of finding a
DC of cardinality exactly 𝜒𝑑𝑜𝑚(𝐺) is called the Dominated
Coloring Problem (DCP). In this paper, we investigate two In-
teger Programming formulations for DCP and accompanying
Branch-and-bound algorithms. One formulation relies on the
concept of representatives and is strengthened with a set of
valid inequalities that substantially improves its Linear Pro-
gramming Relaxation bounds for sparse graph instances. The
other is a set covering (SC) formulation that assigns binary
variables to the maximal cliques in the open neighborhoods
of every individual vertex of 𝐺. Our preliminary numerical
results suggest that the clique formulation is, on average,
47% stronger than the formulation by representatives. Addi-
tionally, its corresponding Branch-and-bound algorithm also
provides substantially better results, despite the fact that,
at least for the moment, we explicitly enumerate and keep
all necessary cliques, as opposed to resorting to a properly
defined restricted master problem, in a column generation
scheme.

1 INTRODUCTION

Let 𝐺 = (𝑉,𝐸) be a undirected graph with 𝑛 = |𝑉 | vertices
and 𝑚 = |𝐸| edges. The (open) neighborhood of 𝑖 ∈ 𝑉 ,
𝑁(𝑖) = {𝑗 ∈ 𝑉 : {𝑖, 𝑗} ∈ 𝐸}, corresponds to the set of vertices
that share an edge of 𝐸 with 𝑖. Vertex 𝑖 ∈ 𝑉 dominates a set
𝑆 ⊂ 𝑉 if and only if 𝑆 ⊆ 𝑁(𝑖) applies. A proper coloring of 𝐺,
or simply a coloring, is a function 𝑐 : 𝑉 → {1, 2, . . . , 𝑛} such
that no pair of adjacent vertices are colored with the same
color. A color class 𝐶𝑖 = {𝑗 ∈ 𝑉 : 𝑐(𝑗) = 𝑖} corresponds to all
vertices of𝐺 which are assigned a same color and consequently

© 2024 Copyright held by the owner/author(s). Published in Pro-
ceedings of the 11th International Network Optimization Conference
(INOC), March 11 - 13, 2024, Dublin, Ireland. ISBN 978-3-89318-095-0
on OpenProceedings.org
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Commons license CC-by-nc-nd 4.0.

defines a stable set of 𝐺. A 𝑘-coloring of 𝐺 is a partitioning
of 𝑉 into 𝑘 color classes. Additionally, a 𝑘-coloring of 𝐺 is
dominated if and only if 𝐶𝑖 ⊆ 𝑁(𝑢) holds for some 𝑢 ∈ 𝑉 , for
every color class 𝐶𝑖 in the partitioning. Assume, from now
on, that when we say a vertex of 𝑉 dominates a color class
it implies that such a vertex dominates, i.e., is a neighbor to,
all vertices in that class. The Dominated Coloring Problem
(DCP) then asks a dominated 𝑘-coloring of 𝐺 with 𝑘 as small
as possible, i.e., one for which 𝑘 = 𝜒𝑑𝑜𝑚(𝐺) applies. Note that
according to such a definition, color classes may eventually
contain a single vertex, provided 𝐺 has no leaves.

Vertex coloring problems [8] are intensively investigated
in the literature. This applies mostly due to their widespread
theoretical and practical applicability and also to the fact
that they are generally NP-complete. More recently, prob-
lems combining coloring and domination demands started
to be investigated, DCP among them. In particular, DCP
was introduced in [10] where its decision version was proven
NP-Complete for arbitrary graphs with 𝜒𝑑𝑜𝑚(𝐺) ≥ 4. Addi-
tionally, a polynomial time algorithm for recognizing graphs
with 𝜒𝑑𝑜𝑚(𝐺) ≤ 3 is also proposed in [10]. Besides its intrin-
sic theoretical importance, DCP finds applications in social
networks [5], in genetic networks [6] for finding minimum
groups of proteins satisfying some given types of interactions
and in the interconnection of computer networks [7].

A problem that is closely related to DCP is the Dominator
Coloring Problem (DtorCP) [4, 6]. A coloring is said to be
feasible for it if every vertex of 𝐺 dominates at least one
color class, possibly its own color class (i.e., dominates all
vertices in that class). Accordingly, among other differences,
dominance requirements differ from DCP to DtorCP.

To the best of our knowledge, no Integer Programming (IP)
formulations or IP based exact solution approach appears to
exist for DCP. In this paper, we introduce two IP formula-
tions, valid inequalities and Branch-and-bound algorithms
for the problem. Apart from this introduction, the paper
contains four additional sections. In Section 2, we present
the formulations and in Section 3 we give some implementa-
tion details of our Branch-and-bound algorithms for solving
them. Some preliminary computational results are reported
in Section 4. We conclude the paper in Section 5, where
we highlight our main findings and offer some directions for
future research.
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2 INTEGER PROGRAMMING
FORMULATIONS

The presentation that follows relies on some standard nota-
tion in Graph Theory [2], summarized next. The closed neigh-
borhood of 𝑖 is 𝑁 [𝑖] := 𝑁(𝑖) ∪ {𝑖}. The anti-neighborhoods

of 𝑖 are 𝑁(𝑖) = 𝑉 ∖ (𝑁(𝑖) ∪ {𝑖}) and 𝑁 [𝑖] = 𝑉 ∖𝑁(𝑖). Pairs
of vertices {𝑖, 𝑗} that are not neighbors in 𝐺 are identified

by the end points to the edge 𝑒 = {𝑖, 𝑗} ∈ 𝐸, where 𝐸 is

the complement of 𝐸. Accordingly, 𝐺 is the graph (𝑉,𝐸),
that complements 𝐺. We assume that 𝐺 is connected since
otherwise DCP would then decompose into various, smaller,
DCPs, one for every connected component of the graph. We
also assume that 𝐺 has no leaves, since otherwise any leaf
𝑖 ∈ 𝑉 might be colored with the same color of a vertex 𝑗
adjacent to the only neighbor of 𝑖, 𝑝 (𝑝 ∈ 𝑁(𝑖)∩𝑁(𝑗)), with-
out increasing the chromatic number. Given a set 𝑆 ⊆ 𝑉 ,
the subgraph induced by 𝑆 is 𝐺[𝑆] = (𝑆,𝐸(𝑆)), where 𝐸(𝑆)
denotes the set of edges of 𝐸 with both endpoints in 𝑆.
Likewise, 𝐺[𝑆] = (𝑆,𝐸(𝑆)) denotes a subgraph of 𝐺, where

𝐸(𝑆) = {{𝑖, 𝑗} ∈ 𝑆 : {𝑖, 𝑗} ∈ 𝐸}. A clique of 𝐺 is a set 𝑆 ⊆ 𝑉
such that 𝐺[𝑆] is complete, i.e., all vertices in 𝑆 are pairwise
neighbors in 𝐺. Thus, a stable set of 𝐺 corresponds to a
clique of 𝐺, after we extend the clique definition to subsets of
vertices of size 2 and 3, i.e., respectively edges and triangles.
As usual, we assume that B is the set {0, 1}.

2.1 A formulation by representatives

The formulation uses two sets of decision variables, namely:

∙ x = {𝑥𝑖𝑗 ∈ B : 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁 [𝑖], 𝑗 ≥ 𝑖}. If 𝑥𝑗𝑗 = 1
applies, vertex 𝑗 is colored with color 𝑐(𝑗) = 𝑗, and
is said to represent 𝐶𝑗 , the color class containing it.
Conversely, if 𝑥𝑗𝑗 = 0 holds, vertex 𝑗 must belong to a
color class represented by one of its anti-neighbors. In
more detail, variable 𝑥𝑖𝑗 for 𝑖 < 𝑗 is used to indicate
whether or not vertex 𝑗 belongs to the color class 𝐶𝑖.
In case it does, 𝑥𝑖𝑗 = 1 must hold and both vertices are
colored identically with color 𝑐(𝑖) = 𝑐(𝑗) = 𝑖 and the
two vertices therefore belong to 𝐶𝑖. Otherwise, 𝑥𝑖𝑗 = 0
applies. Note that, in order to break formulation sym-
metries, variables 𝑥𝑖𝑗 are not assigned to anti-neighbors
𝑖, 𝑗 such that 𝑖 > 𝑗.

∙ z = {𝑧𝑝𝑢 ∈ B : 𝑢 ∈ 𝑉, 𝑝 ∈ 𝑁(𝑢)}. Variable 𝑧𝑝𝑢 is used to
indicate whether or not 𝑢 ∈ 𝑉 is the vertex chosen to
dominate 𝐶𝑝, an eventual color class represented by 𝑝.
In case it is the chosen vertex, all vertices colored with
color 𝑐(𝑝) = 𝑝 must be neighbors of 𝑢. Thus, if 𝑧𝑝𝑢 = 1,
𝐶𝑝 ⊆ 𝑁(𝑢) must hold.

DCP can be formulated as the following IP

𝜒𝑑𝑜𝑚(𝐺) = min

{︃∑︁

𝑖∈𝑉

𝑥𝑖𝑖 : (x, z) ∈ 𝒫𝑟 ∩ (B𝑑𝑥 ,B𝑑𝑧 )

}︃
, (1)

where the polyhedral set 𝒫𝑟 is defined by constraints (2)-(7)
and 𝑑𝑥 and 𝑑𝑧 respectively denote the dimension of x and z.
Accordingly, 𝒫𝑟 is thus formulated as

∑︁

𝑣∈𝑁 [𝑢],𝑣≤𝑢

𝑥𝑣𝑢 = 1 𝑢 ∈ 𝑉 (2)

𝑥𝑝𝑖 + 𝑥𝑝𝑗 ≤ 𝑥𝑝𝑝 {𝑖, 𝑗} ∈ 𝐸, 𝑝 ∈ 𝑁(𝑖) ∩𝑁(𝑗) (3)

𝑝 < 𝑖, 𝑝 < 𝑗
∑︁

𝑢∈𝑁(𝑣)

𝑧𝑣𝑢 = 𝑥𝑣𝑣 𝑣 ∈ 𝑉 (4)

𝑧𝑣𝑢 + 𝑥𝑣𝑡 ≤ 𝑥𝑣𝑣 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑁(𝑢), (5)

𝑡 ∈ 𝑁(𝑢) ∩𝑁(𝑣), 𝑣 < 𝑡

𝑥𝑖𝑗 ∈ [0, 1] 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁 [𝑖], 𝑗 ≥ 𝑖 (6)

𝑧𝑝𝑢 ∈ [0, 1] 𝑢 ∈ 𝑉, 𝑝 ∈ 𝑁(𝑢) (7)

Constraints (2) enforce that all vertices of 𝐺 are assigned
to a color class and the number of classes is minimized by
the objective function in (1). In turn, constraints (3) imply
that a vertex 𝑝 cannot represent the color of a anti-neighbor,
say 𝑖, unless 𝑝 is the representative of its own color class.
They also enforce that no pair of neighbors 𝑖 and 𝑗 can be
represented by a common anti-neighbor 𝑝.

The fact that every color class must be dominated by a
vertex is ensured by constraints (4) and (5). Notice that
constraints (4) imply that if 𝑣 represents a color class, there
must be another vertex 𝑢, in the neighborhood of 𝑣, such
that 𝑧𝑣𝑢 = 1 applies. Now, under the assumption that 𝑧𝑣𝑢 = 1
holds, constraints (5) forbid vertex 𝑣 to represent a vertex 𝑡
outside the neighborhood of 𝑢, the vertex chosen to dominate
the color class 𝐶𝑣. Note that a color class 𝐶𝑣 may well be
dominated by more than two neighbors of 𝑣. The formulation,
however, requires that only one variable, say 𝑧𝑣𝑢 : 𝑢 ∈ 𝑁(𝑣),
assumes value one in such cases.

Formulation 𝒫𝑟 could be reinforced, for instance, by re-
placing inequalities (3) by its stronger clique form:

∑︁

𝑖∈𝑄,𝑖>𝑝

𝑥𝑝𝑖 ≤ 𝑥𝑝𝑝, 𝑝 ∈ 𝑉,𝑄 a maximal clique of 𝐺[𝑁(𝑝)].

(8)
It can also be strengthened with the following set of valid

inequalities:

𝑥𝑘𝑡 ≤
∑︁

𝑖∈𝑁(𝑡)∩𝑁(𝑘)

𝑧𝑘𝑖 , 𝑘 ∈ 𝑉, 𝑡 ∈ 𝑁(𝑘), 𝑡 > 𝑘. (9)

If 𝑥𝑘𝑡 = 0 applies, inequality (9) is trivially valid. Other-
wise, if 𝑥𝑘𝑡 = 1 holds, color 𝑘 must be dominated by a vertex
in the open neighborhood of both 𝑘 and 𝑡. Hence, inequalities
(9) are valid for DCP.

For the moment, we do not use the stronger set (8) to
enforce proper colorings of 𝐺. Thus, denote by 𝒫+

𝑟 the poly-
hedral region 𝒫𝑟 reinforced with constraints (9) only, i.e., 𝒫+

𝑟

is defined by constraints (2)-(7) and (9).

2.2 A formulation based on cliques of
𝐺[𝑁(𝑢)]

From the seminal work of Mehrotra and Trick [9] onwards,
it became a common practice to use maximal cliques to
formulate the vertex coloring problem and variants of it.
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As a result, column generation based Branch-and-bound
algorithms became the standard approach for solving coloring
problems. Our additional DCP formulation complies with this
standard. It is a set covering one that assigns binary variables
to a subset of the cliques of 𝐺. In doing so, the formulation
makes sure that every vertex of 𝐺 must be part of at least
one clique. Given that color classes must be dominated by at
least one vertex, one must only consider cliques contained in
{𝐺[𝑁(𝑢)] : 𝑢 ∈ 𝑉 }.

Our formulation makes a clear distinction between cliques
of sizes 3 or greater and cliques of size 2. As we shall discuss
later on, among all cliques of size at least 3 for the graphs
{𝐺[𝑁(𝑢)] : 𝑢 ∈ 𝑉 }, we can restrict ourselves to maximal
ones.

Prior to introducing the formulation, additional notation is
required. Firstly, let 𝒬𝑢 denote the set of all maximal cliques
of 𝐺[𝑁(𝑢)] with at least 3 vertices. Accordingly, denote by

𝒬 =
⋃︀

𝑢∈𝑉 𝒬𝑢 the set of all these cliques in 𝐺[𝑁(𝑢)] . Ad-

ditionally, define the set 𝛿(𝑢) as the subset of edges of the

complement graph 𝐺 that are incident to 𝑢. Furthermore, de-
fine 𝛿𝑅(𝑢) = {{𝑢, 𝑝} ∈ 𝛿(𝑢) : 𝑢, 𝑝 ∈ 𝑁(𝑣) for some 𝑣 ∈ 𝑉 } as

the subset of edges of 𝛿(𝑢) whose endpoints share a common

neighbor in 𝐸. Finally, define 𝐸𝑅 =
⋃︀

𝑢∈𝑉 𝛿𝑅(𝑢).
We now discuss the decision variables required by the for-

mulation. Recall that DCP allows for color classes composed
by singleton vertices. Since we assume that 𝐺 is connected,
any color class 𝐶𝑢 composed by just a single vertex 𝑢 can
be dominated by a neighbor of 𝑢. In order to model the case
where a vertex alone defines a color class, the formulation
makes use of variables w = {𝑤𝑢 ∈ B : 𝑢 ∈ 𝑉 }. If 𝑤𝑢 = 1,
𝐶𝑢 = {𝑢}, 𝑢 represents itself and no other vertex in 𝑉 . Oth-
erwise, if 𝑤𝑢 = 0 holds, vertex 𝑢 must be part of a color class
containing at least two vertices.

Note that if a color class is composed by just two vertices,
say two anti-neighbors 𝑢 and 𝑝, then these two vertices must
define an edge of 𝛿𝑅(𝑢) (and 𝛿𝑅(𝑝)) as they must have a
common neighbor 𝑣 that dominates them. To model these
cliques, the formulation uses binary variables y = {𝑦𝑢𝑝 ∈ B :

{𝑢, 𝑝} ∈ 𝐸𝑅}. Since two anti-neighbors 𝑢 and 𝑝 that do not
share a common neighbor cannot define a color class, the
formulation needs not to assign variables to edges in 𝐸 ∖𝐸𝑅.

The formulation also uses binary decision variables 𝜆 =
{𝜆𝑄 ∈ B : 𝑄 ∈ 𝒬} associated to the maximal cliques in 𝒬. If
𝜆𝑄 = 1, all the vertices in 𝑄 define a color class. Otherwise,
if 𝜆𝑄 = 0 holds, at least one vertex in 𝒬 is colored differently
from the others.

Our set covering based formulation is defined as

𝜒𝑑𝑜𝑚(𝐺) = min

⎧
⎨
⎩

∑︁

𝑄∈𝒬
𝜆𝑄 +

∑︁

𝑢∈𝑉

𝑤𝑢 +
∑︁

{𝑝,𝑞}∈𝐸𝑅

𝑦𝑝𝑞 :

(w,y, 𝜆) ∈ 𝒫𝑐 ∩ (B𝑛,B|𝐸𝑅|,B|𝒬|)
}︁
, (10)

where 𝒫𝑐 is the defined by constraints (11)-(14).

∑︁

𝑄∈𝒬:𝑢∈𝑄

𝜆𝑄 +
∑︁

{𝑢,𝑞}∈𝛿𝑅(𝑢)

𝑦𝑢𝑞 + 𝑤𝑢 ≥ 1 𝑢 ∈ 𝑉 (11)

𝜆𝑄 ∈ [0, 1] 𝑄 ∈ 𝒬 (12)

𝑤𝑢 ∈ [0, 1] 𝑢 ∈ 𝑉 (13)

𝑦𝑝𝑞 ∈ [0, 1] {𝑝, 𝑞} ∈ 𝐸𝑅

(14)

In order to attest its validity, initially note that the defini-
tion of the decision variables enforces that all color classes
are dominated by some vertex of 𝑉 . Therefore the dominance
property of our coloring is naturally enforced by set covering
constraints (11), which also ensure that every vertex belongs
to at least one color class. Since decision variables 𝜆 are
assigned to maximal cliques of {𝐺[𝑁(𝑢)] : 𝑢 ∈ 𝑉 } only, and
not to general cliques of these graphs, the formulation must
impose a covering of the vertices of 𝑉 and not a partitioning
of them. Additionally, in order to certify that assigning a
same vertex to two distinct color classes does not represent

a problem, let (𝜆̂, ŵ, ŷ) be an optimal solution to (10) with
𝜒̂𝑑𝑜𝑚(𝐺) color classes. Suppose as well that 𝑢 belongs to two
or more color classes in such a solution. A dominated coloring
of 𝐺 containing no more than 𝜒̂𝑑𝑜𝑚(𝐺) color classes and such
that every vertex of 𝐺 belongs to a single color class, may

be obtained directly from (𝜆̂, ŵ, ŷ), as follows:

∙ If 𝑤̂𝑢 = 1 and either 𝑦𝑢𝑝 = 1 or 𝜆̂𝑄 = 1, 𝑢 ∈ 𝑄, applies,
one may safely set 𝑤̂𝑢 = 0, and obtain a solution with
𝜒̂𝑑𝑜𝑚(𝐺)− 1 color classes, contradicting the optimality

of (𝜆̂, ŵ, ŷ).
∙ If two or more cliques with at least two vertices con-
tain the same 𝑢, we can remove 𝑢 from all but one
of them and an alternative optimal solution to (10),
with 𝜒̂𝑑𝑜𝑚(𝐺) color classes is thus obtained. In partic-
ular, note that the resulting solution remains a proper
coloring of 𝐺.

Our numerical results show that optimal solutions to (10)
typically involve non-disjoint color classes. Accordingly, a fast
post-processing procedure based on the second observation
above suffices to obtain an alternative optimal solution, with
every vertex of 𝐺 belonging to exactly one color class.

3 ALGORITHMS FOR SOLVING THE
FORMULATIONS

We implemented two Branch-and-bound algorithms for solv-
ing DCP formulations 𝒫+

𝑟 and 𝒫𝑐, BBR and BBCLK, respec-
tively. They are implemented in Python 3.8.5 and rely on
the XPRESS Mixed Integer Programming (MIP) suite [12], re-
lease 39.01.04, for carrying out Branch-and-bound demands.
XPRESS thus takes care of solving Linear Programming Re-
laxations (LPRs) and managing the search tree. The solver
separates general purpose cutting planes, implements branch-
ing and searches the Branch-and-bound tree according to its
default policies. Aside from forbidding multi-threading, we
changed no other default XPRESS parameters.
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As formulation 𝒫𝑐 involves exponentially many decision
variables, a natural solution approach for solving it would
resort to column generation, i.e., generating maximal cliques
on-the-fly. Instead of that, we enumerate all cliques of 𝒬 and
use them directly in the formulation. Accordingly, differently
from most graph coloring algorithms introduced in the past
twenty years, ours is a Branch-and-bound algorithm based
on the full blown formulation 𝒫𝑐 and not a Branch-and-price
one.

The enumeration of maximal cliques of {𝐺[𝑁(𝑢)] : 𝑢 ∈ 𝑉 }
is carried out by our C implementation of the algorithm in
[11], a variant of the widely known Bron-Kerbosh algorithm
[3].

The most time consuming operation for loading formu-
lation 𝒫𝑐 into the MIP solver was not the enumeration of
all required maximal cliques, but checking for duplicates
among them. Since the same set 𝑄 may define a maximal
clique for different graphs 𝐺[𝑁(𝑢)] and 𝐺[𝑁(𝑣)], we used
a hash table to identify duplicate cliques. This hash table
was implemented using standard Python data structures. As
we shall see next, the number of variables appearing in our
formulation tends to be relatively small. Additionally, the
total CPU times taken to enumerate maximal cliques we
require, to check for duplicate ones among them, and to get
the algorithm up and running for solving our initial LPRs
were not an issue.

4 PRELIMINARY NUMERICAL
EXPERIMENTS

This section presents numerical results obtained with formu-
lations 𝒫𝑟, 𝒫+

𝑟 and 𝒫𝑐. We first compare the quality of their
LPR bounds and then compare algorithms BBR and BBCLK,
respectively based on 𝒫+

𝑟 and 𝒫𝑐. From now on, assume that
𝑤(𝒫𝑟), 𝑤(𝒫+

𝑟 ) and 𝑤(𝒫𝑐) denote the LPR bounds associated
with formulations 𝒫𝑟, 𝒫+

𝑟 and 𝒫𝑐, respectively.
Our numerical investigation was conducted with two sets of

test instances. One of them comprising 29 graphs frequently
used to test exact solution algorithms for the Minimum Con-
nected Dominating Set (MCDS) [1]. These are randomly
generated instances with 𝑛 ∈ [30, 120] vertices and different
graph densities, in the range [5%, 70%]. Instances are identi-
fied as 𝑣 𝑛 𝑑𝑒𝑛, where 𝑛 gives the number of vertices for the
corresponding connected input graph and 𝑑𝑒𝑛 is the instance
density. Additional details on how they were generated can
be found in [1]. The other set comprises 8 benchmark in-
stances for the Maximal Clique Problem, introduced in the
2nd DIMACS Challenge, being available at the web reposi-
tory https://iridia.ulb.ac.be/̃fmascia/maximum clique.
Among the instances available there, we collected 8, with 𝑛 ≤
120 vertices, namely: myciel4, myciel5, myciel6, hamming6-2,
hamming6-4, johnson8-2-4, johnson8-4-4 and MANN a9.

Table 1 presents some numerical results. Its first four
columns provide the instance name, followed by 𝑛, 𝑚 and
graph density (den), 2𝑚

𝑛(𝑛−1)
, in percentage values. The three

subsequent columns indicate the dual bounds 𝑤(𝒫𝑟), 𝑤(𝒫+
𝑟 )

and 𝑤(𝒫𝑐). Additionally, the table provides numerical results

for the two algorithms under comparison, BBR and BBCLK.
Each algorithm was allowed to run for 1800 seconds, for
every instance involved. The results displayed for algorithm
BBR are: the best lower (BLB) and upper (BUB) bounds
attained during the search, the CPU time (𝑡, in seconds)
taken to solve the instance and the number of nodes investi-
gated in the search. For algorithm BBCLK, the table provides
an additional information, 𝑛𝑣, the total number of decision
variables needed to formulate the problem. If the best DCP
lower and upper bounds found after hitting the imposed time
limit do not match, a label “tl” indicates that the instance
remained unsolved after 1800 CPU seconds. Numerical exper-
iments were conducted with a 12 core Intel i7-5820K machine,
running at 3.30GHz with 32Gbytes of shared RAM memory.
Our clique enumeration algorithm was implemented in C and
compiled with gcc, with optimization flag -O3 turned on.

We first evaluate the impact of strengthening formulation
𝒫𝑟 with valid inequalities (9). To that aim, some additional
results are depicted in Figure 1. For each instance in our test

set, we plot the LPR ratio
𝑤(𝒫+

𝑟 )

𝑤(𝒫𝑟)
in the horizontal axis and

the graph density, 𝑑𝑒𝑛, in the vertical axis. Our results indi-
cate that the inclusion of inequalities (9) impacts positively
for sparse instances. For such cases, bounds 𝑤(𝒫𝑟) frequently
more than doubled, without significantly increasing the CPU
time demands for their evaluation. In contrast, these inequal-
ities brought no strengthening benefits for instances with
input graph densities in the [50%, 70%] range.
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Comparison of formulations +r  and r

Figure 1: Comparison of formulations 𝒫+
𝑟 and 𝒫𝑟.

The horizontal axis gives the ratio
𝑤(𝒫+

𝑟 )

𝑤(𝒫𝑟)
whereas

the vertical axis gives the graph density.

In order to compare formulations 𝒫+
𝑟 and 𝒫𝑐, Figure 2

plots, for each instance, the LPR bound ratio 𝑤(𝒫𝑐)

𝑤(𝒫+
𝑟 )

(indi-

cated in the horizontal axis) and the ratio between the CPU
times taken to compute 𝑤(𝒫𝑐) and 𝑤(𝒫+

𝑟 ) (in the vertical
axis). The CPU times we recorded for the computation of
𝑤(𝒫𝑐) account for the time taken to enumerate cliques, for
the checking of duplicate ones, as well as for solving the LPR

itself. Measured by the gap
𝑤(𝒫𝑐)−𝑤(𝒫+

𝑟 )

𝑤(𝒫+
𝑟 )

, formulation 𝑤(𝒫𝑐)

is about 47% stronger, on average, than 𝑤(𝒫+
𝑟 ). Compared

to 𝒫+
𝑟 , formulation 𝒫𝑐 becomes stronger as the graph density

increases. Notice that Figure 2 shows that the CPU times
taken to compute 𝑤(𝒫𝑐) are frequently below 50% of the
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CPU times needed to compute 𝑤(𝒫+
𝑟 ). That happens despite

the fact that formulation 𝒫𝑐 involves, at times, more than 150
thousand variables, all of them being explicitly used in the
linear programming master program. Our numerical results
thus lean in favor of formulation 𝒫𝑐 not only in terms of
bound quality but also in terms of the computational effort
taken to upload and solve it.
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Figure 2: Comparison of formulations 𝒫𝑐 and 𝒫+
𝑟 ,

in terms of LPR relaxation bounds and LPR CPU
times. The horizontal axis gives the ratio 𝑤(𝒫𝑐)

𝑤(𝒫+
𝑟 )

whereas the vertical axis gives the ratio between the
CPU time taken to compute bounds 𝑤(𝒫𝑐) and the
time needed to compute 𝑤(𝒫+

𝑟 ).

We now discuss numerical results attained by Branch-and-
bound algorithms BBCLK and BBR. Out of the 37 instances
tested here, BBCLK and BBR respectively solved 30 and 24
instances to proven optimality, within the 1800 seconds time
limit. All instances solved by BBR were also solved by BBCLK.
While BBCLK takes less than 35 seconds to solve all these 24
instances, BBR takes more than 2744 seconds to accomplish
that. BBCLK solved all instances with up to 70 vertices coming
from the MCDS literature and failed to solve larger instances
with densities in the intermediate range for our test bed.
BBCLK solved all 8 maximum clique instances, whereas BBR
solved 6 of them.

Considering now the 7 instances both algorithms left un-
solved, BBCLK also has the edge for them. Best lower bounds
provided by BBCLK are always stronger than BBR’s counter-
parts when the time limit is hit. Similarly, the BUB values
attained by BBCLK are strictly smaller than BBR’s in 6 out of
7 cases. For just one case, both algorithms attained feasible
solutions of the same value. At termination, BBR attains an
average duality gap of 38.9% for these 7 instances, while the
corresponding figure for BBCLK is just 15.8%.

Another interesting result is that BBR spent the entire CPU
time at the root node when solving instance v120 d20. Notice
that for this instance, the best lower bound attained by BBR

(9.41) is strictly larger than the 𝑤(𝒫+
𝑟 ) value (5.94), but

smaller than the 𝑤(𝒫𝑐) counterpart (10.89). BBR root node
lower bounds are stronger than the 𝑤(𝒫+

𝑟 ) values since BBR

(as well as BBCLK) benefits from the general purpose cutting
plane algorithm implemented by XPRESS, in the sense that
after LPR bounds 𝑤(𝒫+

𝑟 ) (and 𝑤(𝒫𝑐)) are computed, XPRESS

adds some additional valid inequalities to the formulation at
hand. However, for 8 out of the 13 instances not solved by
BBR, the best BBR lower bounds, after the addition of these
XPRESS cuts throughout the search tree and the enumeration
of hundreds of BBR nodes, are weaker than LPR bounds
𝑤(𝒫𝑐).

5 CONCLUSIONS

We investigated formulations, valid inequalities and Branch-
and-bound algorithms for the Dominated Coloring Problem.
Two Integer Programming formulations were proposed here.
One is based on a model by representatives and the other
makes use of exponentially many maximal cliques of the
complement graphs induced by the open neighborhood of the
vertices of 𝐺. Two Branch-and-bound algorithms based on
these formulations were also numerically tested here. Our so
far limited numerical experience suggests a clear advantage
of the formulation based on cliques over the representatives.
Linear Programming relaxation bounds for the clique for-
mulation are about 47% stronger than those attained by
the formulation by representatives, even after strengthening
the latter with a set of valid inequalities introduced here.
Better results were also provided by the Branch-and-bound
algorithm based on the clique formulation, despite the fact
that the algorithm enumerates and explicitly uses all de-
cision variables in the model, without resorting to column
generation.

The formulation by representatives could be further strength-
ened by separating the stronger form (8) of inequalities (3).
In doing so, the resulting Branch-and-cut algorithm might
become more competitive with the algorithm that relies on
maximal cliques. The implementation of a Branch-and-price
algorithm that prices cliques instead of explicitly using them
in the model should also be an interesting research direc-
tion, that might improve the preliminary numerical results
provided here.
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Table 1: Linear programming relaxation bounds and numerical results obtained by algorithms BBR and BBCLK.

Instance data LPR bounds BBR results BBCLK results
Inst 𝑛 𝑚 den 𝑤(𝒫 𝑟) 𝑤(𝒫 𝑟+) 𝑤(𝒫 𝑐) BLB BUB 𝑡 nodes nv BLB BUB 𝑡 nodes
v30 d10 30 44 9.78 3.16 12.00 12.00 12.00 12.00 0.01 1 128 12.00 12.00 0.01 1
v30 d20 30 87 19.33 3.61 6.20 7.20 8.00 8.00 0.08 1 363 8.00 8.00 0.01 1
v30 d30 30 131 29.11 3.50 4.09 5.80 7.00 7.00 1.83 11 589 7.00 7.00 0.15 1
v30 d50 30 218 48.44 5.33 5.33 6.67 7.00 7.00 0.1 1 695 7.00 7.00 0.01 1
v30 d70 30 305 67.78 7.89 7.89 9.20 10.00 10.00 0.01 1 284 10.00 10.00 0.01 1

v50 d10 50 123 9.84 3.00 10.50 11.43 12.00 12.00 1.1 11 545 12.00 12.00 0.01 1
v50 d20 50 245 19.60 3.52 5.79 7.22 8.00 8.00 0.84 1 1443 8.00 8.00 0.02 1
v50 d30 50 368 29.44 4.05 4.46 7.17 8.00 8.00 66.6 1019 2767 8.00 8.00 0.3 1
v50 d50 50 613 49.04 5.02 5.02 9.24 10.00 10.00 6.96 3 3654 10.00 10.00 0.14 1
v50 d5 50 61 4.88 3.17 21.50 21.50 22.00 22.00 0.01 1 160 22.00 22.00 0.01 1
v50 d70 50 858 68.64 9.51 9.51 13.26 14.00 14.00 0.14 1 1094 14.00 14.00 0.02 1

v70 d5 70 121 4.94 2.63 23.50 23.71 24.00 24.00 0.05 1 439 24.00 24.00 0.01 1
v70 d10 70 242 9.88 2.55 11.41 12.09 14.00 14.00 14.35 89 1416 14.00 14.00 0.67 11
v70 d20 70 483 19.71 3.38 6.03 8.88 10.00 10.00 1572.98 19826 4400 10.00 10.00 21.73 1516
v70 d30 70 725 29.59 3.85 4.34 8.56 7.62 12.00 tl 6828 9969 10.00 10.00 21.57 1317
v70 d50 70 1208 49.31 5.32 5.32 10.91 10.55 13.00 tl 6393 13636 12.00 12.00 2.19 1
v70 d70 70 1691 69.02 10.42 10.42 16.73 18.00 18.00 9.16 255 2766 18.00 18.00 0.85 7

v100 d5 100 248 4.96 2.50 21.07 21.98 24.00 24.00 11.12 197 1201 24.00 24.00 0.36 11
v100 d10 100 495 9.90 2.67 10.96 12.67 15.00 15.00 829.04 4006 3717 15.00 15.00 9.45 1793
v100 d20 100 990 19.80 4.00 5.98 9.93 9.35 13.00 tl 261 17324 10.36 12.00 tl 88008
v100 d30 100 1485 29.70 4.00 4.47 10.43 8.05 16.00 tl 95 52674 10.81 12.00 tl 23237
v100 d50 100 2475 49.50 5.78 5.78 14.12 12.42 18.00 tl 543 62598 14.48 16.00 tl 25322
v100 d70 100 3465 69.30 10.91 10.91 21.13 21.29 23.00 tl 24682 7919 22.00 22.00 35.73 6957

v120 d5 120 357 4.96 3.00 22.46 22.80 25.00 25.00 24.43 101 2005 25.00 25.00 0.36 11
v120 d10 120 714 9.92 3.00 10.92 12.79 13.12 16.00 tl 1981 6235 14.22 16.00 tl 279751
v120 d20 120 1428 19.83 3.50 5.94 10.89 9.41 18.00 tl 0 45607 11.09 15.00 tl 13941
v120 d30 120 2142 29.75 4.40 4.73 11.74 8.35 20.00 tl 4 144023 11.83 15.00 tl 1937
v120 d50 120 3570 49.58 6.86 6.86 15.24 12.84 22.00 tl 104 150147 15.35 18.00 tl 2356
v120 d70 120 4998 69.42 9.44 9.44 23.70 23.24 26.00 tl 6090 14401 25.00 25.00 102.98 10632

myciel4 23 71 26.84 2.94 3.24 3.24 5.00 5.00 0.55 25 228 5.00 5.00 0.04 1
myciel5 47 236 21.37 2.98 3.55 3.55 6.00 6.00 203.19 23061 939 6.00 6.00 0.12 11
myciel6 95 755 16.73 2.98 3.83 3.83 4.72 7.00 tl 10582 3900 7.00 7.00 0.32 55
hamming6-2 64 1824 89.06 23.67 23.67 32.00 32.00 32.00 0.01 1 256 32.00 32.00 0.01 1
hamming6-4 64 704 34.38 4.00 4.04 5.33 5.66 7.00 tl 7325 2848 7.00 7.00 0.72 5
johnson8-2-4 28 210 53.57 4.20 4.73 5.60 6.00 6.00 1.16 87 420 6.00 6.00 0.14 1
johnson8-4-4 70 1855 75.71 11.39 11.39 14.00 14.00 14.00 0.36 1 1862 14.00 14.00 0.08 1
MANN a9 45 918 90.67 15.00 15.00 18.00 18.00 18.00 0.0 1 129 18.00 18.00 0.01 1
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Consider a set of robots simultaneously walking through a directed graph. The robots have the same
speed and need one time step to go from a vertex to one of its neighbors. A robot can stay at a vertex
only if there is a loop on that vertex.

A first natural question would be the following: can the robots walk forever without meeting (i.e.,
having collisions)? In this talk, a collision occurs if two robots are simultaneously on the same vertex.
The answer will obviously depend on the structure of the graph and the number of robots. An immediate
second question would be related to collision time: if we know that a collision will necessarily occur, then
is there a time step for which we are sure that there should be at least one collision no later than that
time?

The first question was answered in [1]. The second question will be answered here. Consider a directed
graph D = (V, A) where the minimum outdegree is at least one. A subset of vertices S ⊆ V is called an
independent set if one can build |S| infinitely long walks (one starting from each vertex) that never meet.
Let I be the set of all independent sets. It is shown in [1] that (V, I) is a matroid (the no-meet matroid),
denoted by N(D). The set of no-meet matroids contains transversal matroids and is a strict subset
of gammoids. A polynomial-time algorithm, based on flow techniques, is provided in [1] to check the
independence of any subset S. The dimension of this matroid (i.e., the size of a largest independent set),
denoted by d(N(D)) is shown to be equal to the maximum number of vertices belonging to a collection of
vertex disjoint cycles. Dimension can also be computed in polynomial time using a matching algorithm.

Consider a number w of robots. Each robot will take a walk so w represents a number of walks. If
w ≤ d(N(D)), then one can build infinitely long walks, starting at some independent set, that never
meet. On the other hand, if w > d(N(D)), then a collision will necessarily occur.

Let tw be the first time step such that, given any set of w walks, at least two of them must meet no
later than tw. The main result presented in this talk is that:

tw ≤ |V | − w + 2 (1)

for d(N(D)) < w ≤ |V |. Notice that tw is not defined if w ≤ d(N(D)).
A connection is established between the meeting time tw of walks and a cops and robber game on

directed graphs with helicopter cops and an invisible slow robber. Let us first describe the game.
A set of cops wants to capture a robber moving on D with the following rules:

1. At step 1 the cops pick W1 ⊆ V , then the robber picks a vertex ri ∈ V .

2. At step i + 1 (for any i ≥ 1) the cops pick Wi+1 ⊆ V and the robber picks ri+1 ∈ N+(ri).

In other words, at each step the cops can pick any vertex, while the robber must pick a vertex adjacent
from his current position (we use N+(v) to denote the set of vertices y such that (v, y) is an arc of D. If
S is a set, N+(S) := {y ∈ V (D) | ∃x ∈ S, with (x, y) ∈ A(D)}.
We say that the cops capture the robber if ri ∈ Wi for some i ≥ 1. The capture is at time t, if t is the
minimum index such that rt ∈ Wt. The cops do not know the vertex picked by the robber; their strategy
is defined by the sequence (Wi)i≥1, while the robber strategy is defined by (ri)i≥1. A cop strategy is
winning if, by playing that strategy, they can capture the robber regardless of his strategy. The capture
time of a cop winning strategy is the maximum time step T , over all possible robber’s strategies, such that
the cops capture the robber at time T . A cop winning strategy uses c attempts if c =

∑T
i=1 |Wi|, where

T is the capture time of the cops’ strategy. Notice that we can have |Wi| = 0 for some i ∈ {1, ..., T}.
Let Ri be the set of vertices where the robber can be at step i. Observe that if the robber was not

yet captured at time step i − 1, then we have Ri = N+(Ri−1) \ Wi.
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The capture attempts number of D, denoted by ca(D), is the minimum c such that there exists a cop
winning strategy using c attempts. One can prove that:

ca(D) = d(N(D)). (2)

The capture time using c ≥ ca(D) attempts, denoted by ct(D, c), is the minimum capture time of a
cop winning strategy using c attempts. When fixing a time limit l, we can define ca(D, l) as the minimum
number of capture attempts needed for the cops to capture the robber no later than time step l. Observe
that ca(D, l) ≤ c is equivalent to ct(D, c) ≤ l. One can prove that the ca(D, l) and ct(D, c) parameters
can be computed in polynomial time.

Let us now go back to meeting time. We can show that the meeting time of w walks equals the
capture time in this game, when at most w − 1 capture attempts are allowed. In other words, for
d(N(D)) < w ≤ |V | and c = w − 1, we have:

tw = ct(D, c = w − 1). (3)

To illustrate the definitions and some of the results, consider the graph of Figure 1. The dimension
of the no-meet matroid d(N(D)) is equal to 3. Using (2), we deduce that only 3 capture attempts are
required to guarantee the capture of the robber. More precisely, we have ca(D, 1) = 5, ca(D, 2) = 4 and
ca(D, 3) = 3 implying that 4 capture attemps are needed to guarantee a capture no later than time 2.
This also implies that ct(D, 3) = 3, ct(D, 4) = 2 and ct(D, 5) = 1. From (3), the meeting time tw is
defined for w > 3 and is given by: t4 = ct(D, 3) = 3 and t5 = ct(D, 4) = 2.

1

2
3

4
5

Figure 1: Example of a digraph D with two intersecting 3-cycles.

Other results related to the cops and robber game will be presented. For example, let us focus on the
number of cops that are needed to capture the robber. Let cn(D) be such number. Observe that we are
not interested in the number of capture attempts but only in the minimum number of cops to capture
the robber. Notice that the number of cops is simply given by maxT

i=1 |Wi| if the robber is captured no
later than time T . While ca(D) can be computed in polynomial time, we show that cn(D) is NP-hard
to compute. It is also not difficult to prove that cn(D) is smaller than the 1 + the pathwidth of D. One
can also impose a time limit for capture and define cn(D, l) as the minimum number of cops needed to
guarantee capture no later than time l. Unfortunately, cn(D, l) is also difficult to compute. If we consider
again the graph of Figure 1, one can show that cn(D, 1) = 5, cn(D, 2) = 2 and cn(D, 3) = 1 implying
that cn(D) = 1.
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ABSTRACT
This study focuses on a vehicle routing problem variant involving
multiple depots and split deliveries with discrete deliveries and
small integer vehicle capacities and demands. This can be inter-
preted as the batching of items (𝑘 batches per vehicle), and the
problem is referred to as 𝑘-MD-DSDVRP. An Integer Programming
(IP) formulation is proposed, as well as cuts to reduce symmetries.
In addition, we discuss the existence of an optimal solution without
split cycles and establish bounds for the ratio between the optimal
values of 𝑘-MD-DSDVRP and MD-DSDVRP. Furthermore, a refor-
mulation of 𝑘-MD-DSDVRP as an MDCVRP is presented, followed
by a solution approach through RCSP-based map decomposition.
Experiments using instances of MDSDVRP and SDVRP from the
literature were conducted to evaluate the proposed method, with
an analysis of the impact of using batches and a comparison of
bounds of 𝑘-MD-DSDVRP and MDSDVRP.

KEYWORDS
Vehicle routing, multi-depot, split delivery, logistics, column gener-
ation.

1 INTRODUCTION
In this study, we focus on a vehicle routing problem that involves
multiple depots and split deliveries. Split deliveries refer to a situ-
ation where a customer’s demand can be delivered by more than
one vehicle. Hence, “delivery” in this context refers to providing a
part of a customer’s demand supplied by a vehicle to a customer.
Compared to the MDSDVRP [11] (a standard definition in the lit-
erature for this problem), we assume that the vehicle capacity is a
small integer 𝑘 and that customer demands are at most 𝑘 + 1. These
additional assumptions can be interpreted as grouping items into
“batches.” This variant is referred to here as 𝑘-MD-DSDVRP.

Motivations for investigating the 𝑘-MD-DSDVRP are listed be-
low. Further discussion on the benefits of batching items can be
found in [8].
• A MDSDVRP solution can have many tiny deliveries, which
can be inconvenient for customers, causing interruptions to
receive an insignificant portion of a demand.
• Fractional delivery can also be inconvenient to measure and
control its amount on the fly. Using “batches” simplifies the
process since supplies rely on integer values.
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• From a logistics point of view, it is definitely interesting to
simplify the preparation of deliveries through batches with
many items.
• In a theoretical perspective, an algorithm for 𝑘-MD-DSDVRP
can provide upper bounds for MD-DSDVRP. This is shown
in Section 4.3.
• When 𝑘 is small, it is possible to efficiently model the 𝑘-MD-
DSDVRP as an MDCVRP [12] by creating 𝑘 replicas of each
client. Thus, allowing the use of successful algorithms for
the MDCVRP available in the literature.

Contributions. This study brings the following contributions: (i)
an IP formulation for the MD-DSDVRP with cuts to reduce symme-
tries; (ii) a discussion of the existence of optimal solution without
split cycles and the relation between the number of splits and the
number of routes; (iii) a transformation of instances and solutions
between 𝑘-MD-DSDVRP and MD-DSDVRP, allowing to establish
bounds for the ratio between the optimal values of these problems;
(iv) a 𝑘-MD-DSDVRP model as an MDCVRP, with and a solution
approach through RCSP-based map decomposition; (v) numerical
experiments to evaluate the RCSP-based map decomposition and
the inclusion of cuts to remove split cycles, using instances of MDS-
DVRP and SDVRP available in the literature.

The remaining of the manuscript is as follows. Section 2 presents
an overview of the CVRP variants closely related to this study. Then,
Section 3 defines the 𝑘-MD-DSDVRP and describes a proposed IP
formulation. Section 4 discusses some properties of optimal 𝑘-MD-
DSDVRP solutions and a comparison with optimal MD-DSDVRP
solutions. Section 5 details an RCSP-based map decomposition
approach for solving the 𝑘-MD-DSDVRP. Finally, in Section 6, nu-
merical experiments and remarks are presented.

2 LITERATURE REVIEW
The goal of this Section is to provide entry points for articles defin-
ing closely related problems. The well-known Capacitated Vehicle
Routing Problem (CVRP) is defined on an undirected and complete
graph 𝐺 = (𝑉 , 𝐸) with a set of vertices 𝑉 = {0, 1, . . . , 𝑛}, where 0
represents the depot, the others vertices represent clients, and 𝐸 is
the set of edges. An unlimited number of homogeneous vehicles
is available, each with a capacity 𝑄 > 0. A demand 0 < 𝑞𝑖 ≤ 𝑄
is associated with each customer i in 𝑉 \ {0}. Each customer is
visited exactly once, and their demand is fully supplied. Each edge
𝑒 ∈ 𝐸 has an associated cost 𝑐𝑒 ≥ 0, satisfying the triangular in-
equality. The goal is to build a set of minimum-cost routes for the
vehicles that meet all customers’ demands and respect the vehicles’
capacities.

The Split Delivery Vehicle Routing Problem (SDVRP) was formally
defined by Dror and Trudeau [6, 7]. Unlike the CVRP, the SDVRP
allows fractions of a customer’s demand to be delivered by different
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vehicles, such that the sum of the fractions equals the total demand
of the customer. In the problems mentioned in this article, we
only consider the case in which customer demands are at most
the vehicle’s capacity, even though some works in the literature
investigate the more general case without this constraint.

Gulczynski et al. [10] investigated the SDVRP variant with the
additional constraint that each delivery to a customer has a size of at
least a certain fraction of its demand and called this problem the Split
Delivery Vehicle Routing Problem with Minimum Delivery Amounts
(SDVRP-MDA). The motivation is to avoid too small deliveries,
which generate the inconvenience of managing the receipt of a
quantity with little impact on the total expected delivery.

The Multi-Depot Split Delivery Vehicle Routing Problem (MDS-
DVRP) is a generalization of the SDVRP that allows more than
one depot, as defined in [11]. Therefore, the set of vertices 𝑉 is
partitioned into a set of depots 𝐷 ⊂ 𝑉 and a set of customers
𝐶 = 𝑉 \𝐷 . In this case, we must decide the routes and which depot
each vehicle will depart from. It is also necessary to ensure that each
vehicle returns to the depot from which it left. When we add the
restriction that exactly one route passes through each customer, we
have the so-called Capacitated Multi-Depot Vehicle Routing Problem
(MDCVRP) [12].

Discrete Split Delivery Vehicle Routing Problem (DSDVRP), pro-
posed by Nakao and Nagamochi [14], considers demands and de-
livery sizes restricted to positive integers. To clarify the difference,
we call this variant of theMulti-Depot Discrete Split Delivery Vehicle
Routing Problem (MD-DSDVRP).

The use of integer demands and small integer vehicle capacity
was investigated by Archetti et al. [2] for the SDVRP. They showed
that the problem can be solved in polynomial time using a matching
algorithm when the vehicle capacity is 2 and is NP-hard when the
vehicle capacity is 3. Furthermore, they showed that in the case of
vehicle capacity 3, the optimal value of CVRP (without allowing
split deliveries) is at most 3/2 of the optimal value of SDVRP.

3 k-MD-DSDVRP
This study investigates the Multi-Depot Discrete Split Delivery Vehi-
cle Routing with Small Vehicle Capacity 𝑘 (𝑘-MD-DSDVRP). Given
a small positive integer 𝑘 , the 𝑘-MD-DSDVRP is a variant of MD-
DSDVRP, where vehicle capacity and demands are at most 𝑘 and
𝑘+1, respectively. As the deliveries are integers, the vehicle capacity
and customer demands are also considered integers. We denote by
𝑘-DSDVRP the problem 𝑘-MD-DSDVRP with a single depot.

Vehicle capacity, demands, and delivery sizes are integers in 𝑘-
MD-DSDVRP. Thus, 𝑘 is a “batch” where several items are grouped
into a single one. In this way, the 𝑘-MD-DSDVRP can be inter-
preted as a “discretization” of the MDSDVRP when the batches are
constructed respecting the vehicles’ capacities and the customers’
demands.

3.1 IP formulation
An IP formulation for the MD-DSDVRP was proposed by [16],
inspired by the formulation of the split deliveries found in [4], and
using the so-called MTZ subtour elimination constraints of [13].

Here, a multiflow formulation is proposed, where subtour elimi-
nation constraints found in [5] are used. The problem is defined in

a complete directed graph 𝐺 = (𝑉 ,𝐴) with a cost 𝑐𝑖 𝑗 ≥ 0 assigned
to each edge (𝑖, 𝑗) ∈ 𝐴. This cost function satisfies the triangular
inequality. 𝐺 has a set of vertices 𝑉 = 𝐷 ∪ 𝐶 divided into two
disjoint sets : 𝐷 (depots) and 𝐶 (customers). Each customer 𝑖 ∈ 𝐶
has a non-negative integer demand 𝑞𝑖 . Moreover, there is a set of
homogeneous vehicles 𝑅 with capacity 𝑄 = 𝑘 to deliver all cus-
tomer demands. Note that the expression

∑
𝑖∈𝐶 ⌈𝑞𝑖/𝑘⌉ is an upper

bound on the number of vehicles. The objective is to minimize the
total travel cost while fulfilling all customer demands, respecting
vehicle capacities, and returning each vehicle to its initial depot.
Additionally, the solution must determine the depot of each vehicle.

Equations (1a)–(1i) present an IP formulation for MD-DSDVRP.
The binary variable 𝑥𝑟𝑖 𝑗 is equal to 1 if and only if vehicle 𝑟 ∈ 𝑅
uses arc (𝑖, 𝑗) ∈ 𝐴. On the other hand, the integer variable 𝑦𝑟𝑖
represents the amount that vehicle 𝑟 ∈ 𝑅 delivers to customer 𝑖 ∈ 𝐶 .
The objective is to minimize the total costs of the selected arcs, as
shown in Equation (1a). Equation (1b) establishes that all vehicles
entering a node must also leave it (flow conservation). Equations
(1c) and (1d) ensure that each vehicle’s route passes through exactly
one depot and that there is no cycle on this route containing only
customers. The delivery of the entire demand for each customer
is guaranteed by Equation (1e). Equation (1f) only allows a vehicle
to deliver to a customer if its route passes through it. Finally, the
vehicle capacities are guarantee by Equation (1g).

min
∑︁
(𝑖, 𝑗 ) ∈𝐴

∑︁
𝑟 ∈𝑅

𝑐𝑖 𝑗 · 𝑥𝑟𝑖 𝑗 (1a)

∑︁
𝑖:(𝑖,𝑣) ∈𝐴

𝑥𝑟𝑖 𝑗 −
∑︁

𝑗 :(𝑣,𝑗 ) ∈𝐴
𝑥𝑟𝑗𝑖 = 0 ∀𝑣 ∈ 𝑉 , ∀𝑟 ∈ 𝑅 (1b)

∑︁
𝑑∈𝐷

∑︁
𝑗 :(𝑑,𝑗 ) ∈𝐴

𝑥𝑟𝑑 𝑗 = 1 ∀𝑟 ∈ 𝑅 (1c)

∑︁
(𝑖,𝑗 ) ∈𝐴
𝑖,𝑗 ∈𝑆

𝑥𝑟𝑖 𝑗 ≤ |𝑆 | − 1 ∀𝑆 ⊆ 𝐶, 𝑟 ∈ 𝑅 (1d)

∑︁
𝑟 ∈𝑅

𝑦𝑟𝑖 = 𝑞𝑖 ∀𝑖 ∈ 𝐶 (1e)

𝑞 𝑗 ·
∑︁

𝑖:(𝑖, 𝑗 ) ∈𝐴
𝑥𝑟𝑖 𝑗 ≥ 𝑦𝑟𝑗 ∀𝑗 ∈ 𝐶, ∀𝑟 ∈ 𝑅 (1f)

∑︁
𝑖∈𝐶

𝑦𝑟𝑖 ≤ 𝑄 ∀𝑟 ∈ 𝑅 (1g)

𝑦𝑟𝑖 ∈ {0, 1, 2, . . . , 𝑞𝑖 } ∀𝑖 ∈ 𝐶,∀𝑟 ∈ 𝑅 (1h)
𝑥𝑟𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑟 ∈ 𝑅 (1i)

3.1.1 Reduction of symmetries. All permutations of the vehicles
produce equivalent solutions, thus generating many symmetries.
However, it is possible to reduce this problem by ensuring that the
order of vehicle indexes corresponds to the order of depot indexes.
More precisely, if vehicle 𝑟 passes through depot 𝑑 and vehicle 𝑟 ′
passes through depot 𝑑′, with 𝑑 < 𝑑′, then 𝑟 < 𝑟 ′. The constraint
is provided in Equation (2).

∑︁
𝑗∈𝐶

𝑥𝑟
′
𝑑 𝑗 +

∑︁
𝑗∈𝐶

𝑥𝑟𝑑 ′ 𝑗 ≤ 1, ∀(𝑑, 𝑑′) ∈ 𝐷2 : 𝑑 < 𝑑′,
∀(𝑟, 𝑟 ′) ∈ 𝑅2 : 𝑟 < 𝑟 ′ . (2)
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4 OPTIMAL SOLUTIONS PROPERTIES
In this section, some properties of optimal𝑘-MD-DSDVRP solutions
are derived from existing studies. For the sake of clarity, split cycle
is formally defined in Definition 1. First, we show that there is an
optimal solution for the 𝑘-MD-DSDVRP without a split cycle and
define the relation between the number of splits and the number of
routes. Dror and Trudeau [7] proved this property for the problem
with one depot and fractional deliveries, while Gouveia et al. [9]
extended it for multiple depots. The difference from here is that the
𝑘-MD-DSDVRP deals with integer deliveries and multiple depots.

In the following, a transformation from MD-DSDVRP instances
to 𝑘-MD- DSDVRP instances and transformations between solu-
tions of these problems are presented, together with the optimal
values correspondence obtained through these transformations.
This allows the use of MD-DSDVRP instances from the literature
by grouping the items into batches.

4.1 Existence of split cycles
Definition 1. Let 𝑅 be a set of routes, and a support graph 𝐻 =

(𝑉 , 𝐸) be an undirected graph where 𝑉 is the set of customers and
an edge 𝑒 = (𝑢, 𝑣) belongs to 𝐸 iff there exists a route 𝑟 in 𝑅 such
that 𝑟 passes through 𝑢 and 𝑣 . If 𝐶 is a cycle of 𝐺 , the nodes of 𝐶
form a split cycle of 𝑅.

Property 2 (Dror and Trudeau, 1990 [7]). If the edge costs
satisfy the triangular inequality, then an optimal solution without
split cycles exists for every feasible SDVRP instance.

The authors in [7] proved this property for the SDVRP, and
Gouveia et al. [9] have extended that for the MD-SDVRP. We claim
that this property also applies to𝑘-MD-DSDVRP since the exchange
argument in the demonstration of [7] can also be extended for
discrete deliveries. Note that the limit of 𝑘 on the vehicle capacity
is a characteristic of 𝑘-MD-DSDVRP inputs, not of its solutions.

Property 3. If the edge costs satisfy the triangular inequality,
then an optimal solution without split cycles exists for every feasible
𝑘-MD-DSDVRP instance.

The existence of an optimal solution without split cycles does not
apply to all CVRP variants. Indeed, Gulczynski et al. [10] showed
that SDVRP-MDA instances exist for which all optimal solutions
have a split cycle.

4.2 Number of splits and number of routes
The relation between the number of splits and the number of routes
(employed vehicles) results from the existence of optimal solution
without split cycles. This result can be applied to define cuts to
remove solutions with split cycles, see Section 5.2.1.

Definition 4. The number of deliveries 𝑛𝑖 of customer 𝑖 is the
number of routes that deliver a positive amount to 𝑖 . The number of
splits for customer 𝑖 is defined as 𝑛𝑖 − 1, and the number of splits of
a solution is the sum of the number of splits among all customers.

Property 5 (Archetti et al., 2006 [3]). If the edge costs satisfy
the triangular inequality, then there is an optimal SDVRP solution
where the number of splits is smaller than the number of routes.

Indeed, Property 5 could be generalized to all sets of routes
without a split cycle.

Property 6. If the number of splits is at least the number of routes
for some set of routes 𝑆 , then 𝑆 has a split cycle.

Proof. Let 𝐺 (𝑆 ∪𝐶, 𝐸) be a bipartite undirected graph where
𝐶 is the set of customers with at least two deliveries in 𝑆 , and we
have an edge (𝑟, 𝑐) ∈ 𝐸 if and only if the route 𝑟 ∈ 𝑆 delivers
to customer 𝑐 ∈ 𝐶 . By contrapositive, assume that 𝑆 does not
have a split cycle, and therefore 𝐺 is acyclic. Thus, the number of
edges |𝐸 | is less than the number of vertices |𝑆 | + |𝐶 |. Since the
number of splits 𝑚 in 𝑆 is equal to |𝐸 | − |𝐶 |, we conclude that
𝑚 = |𝐸 | − |𝐶 | < ( |𝑆 | + |𝐶 |) − |𝐶 | = |𝑆 |. □

4.3 MD-DSDVRP and 𝑘-MD-DSDVRP
In Section 4.3.1, a transformation from MD-DSDVRP instances
to 𝑘-MD-DSDVRP instances are provided. Then, in Sections 4.3.2
and 4.3.3, the transformations between the resulting solutions are
given. These transformations allow us to establish Theorem 7,
which allows a correspondance between optimal values for the
MD-DSDVRP and 𝑘-MD-DSDVRP.

4.3.1 From MD-DSDVRP instances to 𝑘-MD-DSDVRP instances.
Let 𝐼 be an instance of MD-DSDVRP with vehicle capacity 𝑄 and
demand 𝑞𝑖 for each customer 𝑖 . For transforming 𝐼 into a 𝑘-MD-
DSDVRP instance 𝐼 ′, items of 𝐼 are grouped into batches of 𝐵 =
⌊𝑄/𝑘⌋ items. Thus, the vehicle capacity of 𝐼 ′ becomes 𝑄 ′ = 𝑘 ,
and each customer’s demand 𝑞𝑖 becomes 𝑞′𝑖 = ⌈𝑞𝑖/𝐵⌉. Note that
this transformation may produce some demands greater than the
vehicle’s capacity 𝑘 (but not exceeding 𝑘 + 1), requiring at least two
deliveries to these customers. For example, when 𝑘 = 3, 𝑄 = 4 and
𝑞𝑖 = 4, in instance 𝐼 ′ the batch size is 𝐵 = 1 and customer 𝑖 has
demand 𝑞′𝑖 = 4, which is greater than the vehicle capacity 𝑄 ′ = 3.

4.3.2 From 𝑘-MD-DSDVRP solutions to MD-DSDVRP solutions.
For every feasible solution 𝑆 ′ for 𝑘-MD-DSDVRP, 𝑞′𝑖 batches are
delivered to each customer 𝑖 . These 𝑞′𝑖 batches can transport up to
𝐵 ·𝑞′𝑖 ≥ 𝑞𝑖 items, enough to satisfy the demand 𝑞𝑖 of each customer
𝑖 . As the sum of deliveries of each vehicle in 𝑆 ′ is at most 𝑘 , the total
number of items transported by each vehicle is at most 𝑘 · 𝐵 ≤ 𝑄 .
Therefore, the routes used in 𝑆 ′ are feasible for MD-DSDVRP.

4.3.3 From MD-DSDVRP solutions to 𝑘-MD-DSDVRP solutions.
The solution transformation preserves MD-DSDVRP routes, in
spite of an increase on the number of vehicles. If 𝑦 𝑗𝑟 denotes the
amount delivered to customer 𝑗 by route 𝑟 of MD-DSDVRP, then
this delivery can be made using ⌈𝑦 𝑗𝑟 /𝐵⌉ batches in 𝑘-MD-DSDVRP.
Thus, the total number of batches required to make the deliveries
of route 𝑟 is 𝑦′𝑟 =

∑
𝑗∈𝐶 ⌈𝑦 𝑗𝑟 /𝐵⌉. As each vehicle in 𝑘-MD-DSDVRP

delivers at most 𝑘 batches, ⌈𝑦′𝑟 /𝑘⌉ vehicles in 𝑘-MD-DSDVRP are
required to deliver the demands of each route 𝑟 .

4.3.4 Comparing optimal values. When comparing the optimal
value of two problems, say 𝑃1 and 𝑃2, we denote by 𝑧 (𝑃) the optimal
value of the problem 𝑃 , and the comparison 𝑧 (𝑃1) ≤ 𝑧 (𝑃2) indicates
that the optimal value of 𝑃1 is less than or equal to the optimal
value of 𝑃2 whenever both problems have the same instance after
the required adjustments.
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Theorem 7. Applying the instance and solution transformations
described in sections 4.3.1, 4.3.2 and 4.3.3, we have that

𝑧 (MD-DSDVRP) ≤ 𝑧 (𝑘-MD-DSDVRP) ≤⌈
min{𝑄,𝑛}

𝑘

⌉
· 𝑧 (MD-DSDVRP), (3)

where 𝑄 is the vehicle capacity of the MD-DSDVRP instance, and 𝑛
is the number of customers. Besides, these bounds are tight.

Proof. The first inequality arises from the fact that the opti-
mal 𝑘-MD-DSDVRP solution can be transformed into a feasible
solution for the corresponding MD-DSDVRP instance without ad-
ditional cost, as discussed in Section 4.3.2. The second inequality
arises from a worst case for the transformation described in Sec-
tion 4.3.3 whenMD-DSDVRP demands are unitary, and each vehicle
delivers to min{𝑄,𝑛} customers. In this case, as the vehicles in 𝑘-
MD-DSDVRP can deliver batches to a maximum of 𝑘 vehicles, we
need ⌈min{𝑄,𝑛}/𝑘⌉ vehicles for each route in the solution of MD-
DSDVRP. According to the triangular inequality and the solution’s
optimality, the cost of delivering to a subset of customers on route
𝑟 is not greater than the cost of 𝑟 . Therefore, the solution for 𝑘-
MD-DSDVRP can cost at most ⌈min{𝑄,𝑛}/𝑘⌉ times the cost of the
optimal solution for MD-DSDVRP.

To show that the bounds are tight, consider an instance of MD-
DSDVRP where all edges between a client and the single depot has
cost one, and the cost of edges between customers is a tiny value 𝜖 .
Therefore, the cost of any possible route converges to 2, remaining
to count the number of routes to determine the cost of the solution.
A tight example for the first inequality occurs when𝑄 is a multiple
of 𝑘 , and all customers have demand 𝑄 . In this case, an optimal
solution for both MD-DSDVRP and 𝑘-MD-DSDVRP consists of
making exclusive deliveries to all customers; that is, each route
delivers to only one customer. Note that when 𝑄 is a multiple
of 𝑘 , it is not possible to have a customer with demand greater
than the vehicle’s capacity in the transformation in Section 4.3.1.
On the other hand, if the vehicle capacity in MD-DSDVRP is the
number of customers and each customer has demand equal to
one, then a single vehicle would be able to make all deliveries
in MD-DSDVRP. However, it would require ⌈𝑛/𝑘⌉ = ⌈𝑄/𝑘⌉ =
⌈min{𝑄,𝑛}/𝑘⌉ vehicles to carry out these deliveries in the 𝑘-MD-
DSDVRP, from which we conclude that this is a tight example for
the second inequality. □

5 RCSP-BASED MAP DECOMPOSITION
This section describes an RCSP-basedmap decomposition for𝑘-MD-
DSDVRP, that is, a column generation where the pricing problem
is the Resource Constrained Shortest Path (RCSP), and sets of arcs in
RCSP are mapped to integer variables of an IP model so that in the
final solution each variable has value equals to the number of used
mapped arcs in the RCSP solution.

The RCSP is defined over a directed graph𝐺 (𝑉 ,𝐴) where 𝑉 is
the set of nodes, and 𝐴 is the set of arcs. The set 𝑉 contains two
special nodes, 𝑠 and 𝑑 , representing the source and destination
nodes, respectively. Each arc 𝑎 ∈ 𝐴 has a cost and a consumption.
The cost of a path 𝑝 is the sum of the costs of its arcs, and the
consumption of 𝑝 is the sum of the consumption of its arcs. Each
node 𝑣 ∈ 𝑉 has a lower and upper bound for the available resource

when the path enters the 𝑣 . The cost of a set of paths is the sum of
the costs of its paths. The objective of RCSP is to find a set with 𝐾
paths from 𝑠 to 𝑑 of minimum cost such that each path starts with
𝑄 units of resource, and the available resource of each path passing
through a node 𝑣 ∈ 𝑉 respects the lower and upper bounds of 𝑣 .

In the following, we define the input graphs for the pricing
problem (RCSP) and then present a formulation for the 𝑘-MD-
DSDVRP using the variables mapped on the arcs of these graphs.
For clarity, the notation of Section 3.1 is adopted in the following
sections.

5.1 RCSP Graphs
Let 𝐺𝑑 = (𝑉𝑑 , 𝐴𝑑 ) be a directed graph for each depot 𝑑 ∈ 𝐷 . For
each customer 𝑖 ∈ 𝐶 , we create a set 𝑉𝑑𝑖 = {𝑣𝑑𝑖,1, 𝑣𝑑𝑖,2, . . . , 𝑣𝑑𝑖,𝑞𝑖 }
containing 𝑞𝑖 replicas of customer 𝑖 . Recall that 𝑞𝑖 denotes the
(integer) demand of customer 𝑖 . Then, we set 𝑉𝑑 = 𝐷 ∪⋃

𝑖∈𝐶 𝑉𝑑𝑖 ,
where 𝐷 is the set of depots. The source and destination nodes are
the depot 𝑑 ∈ 𝐷 .

To reduce symmetries, two replicas of the same customer are
connected by an arc if and only if they have consecutive indexes.
That is, for each replica 𝑣𝑑𝑖,𝑗 , with 𝑗 < 𝑞𝑖 , the only arc going from 𝑣𝑑𝑖,𝑗
to another replica of 𝑖 is the arc (𝑣𝑑𝑖,𝑗 , 𝑣𝑑𝑖,𝑗+1). All other possible arcs
between nodes of𝑉𝑑 are included in 𝐴𝑑 . The cost between replicas
of the same client is zero, and each arc starting from a replica of
client 𝑖 to a replica of a different client 𝑗 has a cost equal to 𝑐𝑖, 𝑗 (cost
of the arc between customers 𝑖 and 𝑗 in the input graph). Similarly,
the cost of an arc between a depot and a replica of client 𝑖 is equal
to the cost of the corresponding arc between this depot and client 𝑖
in the input graph. Thus, when a route reaches a given customer,
the number of consecutive replicas of this customer served by the
route does not affect the route’s cost.

A single resource is consumed on each route, representing the
use of vehicle capacity. There is a unitary resource consumption
whenever the route enters a node other than the depot, as each
replica represents a unit of demand delivered to the customer. There
is no resource consumption in the depot. We set zero and𝑄 at each
node as the accumulated resource consumption limits.

A constraint is added to the IP model to ensure that each client
has exactly one delivery. This can be done through the map decom-
position described in Section 5.2. Figure 1 provides an example of
an 𝑘-MD-DSDVRP instance, and an RCSP optimal solution consid-
ering the additional constraint of exactly one route passing through
each node. In Figure 1-(a), the 𝑘-MD-DSDVRP input graph has two
depots represented by squares (nodes 1 and 2) and three customers
represented by circles (nodes 3, 4, and 5). Each 𝑞𝑖 represents the de-
mand of customer 𝑖 . Edge costs are the Euclidean distances between
nodes, and the vehicle capacity𝑄 is 5. An optimal solution with two
routes is provided in Figure 1-(b). Assuming additional constraint
of exactly one route passing through each node. Each customer 𝑖 is
represented by a dotted circle and is transformed into 𝑞𝑖 replicas.
Only arcs between consecutive replicas are allowed among replicas
of the same customer, all with zero cost. The costs of the remaining
arcs come from the input graph. The arcs returning to a depot have
a consumption zero, and all the remaining arcs have a consumption
one.
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(a) 𝑘-MD-DSDVRP input graph.

(b) An optimal solution.

Figure 1: Example of 𝑘-MD-DSDVRP input graph and corre-
sponding map decomposition optimal solution.

Complexity of transformation. Each client 𝑖 ∈ 𝐶 has 𝑞𝑖 replicas
in each graph𝐺𝑑 , 𝑑 ∈ 𝐷 . Therefore, the resulting total number of
nodes is |𝐷 | · ∑𝑖∈𝐶 𝑞𝑖 . Among the replicas of the same customer,
there are arcs only between consecutive replicas, but all possible
arcs between replicas of different customers are created. Thus, the
total number of arcs is |𝐷 | · (∑𝑖∈𝐶 (𝑞𝑖 − 1) +∑

𝑖∈𝐶 𝑞𝑖
∑
𝑗∈𝐶 : 𝑖≠𝑗 𝑞 𝑗 ).

As 𝑞𝑖 ≤ 𝑘 + 1 for all 𝑖 ∈ 𝐶 , we have that the total number of nodes
is at most (𝑘 + 1) · |𝐷 | · |𝐶 |, and the total number of arcs is at most
|𝐷 | · |𝐶 | · (𝑘 + (𝑘 + 1)2 · ( |𝐶 | − 1)) ∈ Θ(𝑘2 · |𝐷 | · |𝐶 |2).

5.2 Formulation and mapping of variables
Let𝐶′ be the set of replicas, and let𝐺 ′ (𝐶′ ∪𝐷, 𝐸′) be an undirected
graph where the vertices are all replicas and depots, and an edge
{𝑢, 𝑣} ∈ 𝐸′ if and only if (𝑢, 𝑣) ∈ 𝐴𝑑 or (𝑣,𝑢) ∈ 𝐴𝑑 for any of the
graphs 𝐺𝑑 (𝑉𝑑 , 𝐴𝑑 ), 𝑑 ∈ 𝐷 . In Equations (4a)–(4c), a formulation
of 𝑘-MD-DSDVRP is given, where the decision variables 𝑥𝑒 , 𝑒 ∈
𝐸′, are mapped into arcs of the RCSP graphs 𝐺𝑑 , 𝑑 ∈ 𝐷 . That is,
𝑥{𝑢,𝑣} represents the number of routes passing through {𝑢, 𝑣} in
the RCSP solution, taking into account all graphs 𝐺𝑑 , 𝑑 ∈ 𝐷 . Thus,
the formulation minimizes the sum of the costs of the edges used,
subject to the condition that exactly one route passes through each
replica. Let 𝛿 (𝑣) be the set of edges in 𝐸′ incident to the replica
𝑣 ∈ 𝐶′, and thus, Constraint (4b) indicates that exactly two edges
in 𝛿 (𝑣) are used for each replica 𝑣 ∈ 𝐶′. Note that this constraint
affects all graphs𝐺𝑑 , 𝑑 ∈ 𝐷 , so that each replica 𝑣 ∈ 𝐶′ is served by
route in exactly one of these graphs. As 𝑘-MD-DSDVRP does not
restrict the number of vehicles, the number of vehicles considered
in the RCSP of each graph 𝐺𝑑 , 𝑑 ∈ 𝐷 , may range from zero to the
number of replicas.

min
∑︁
𝑒∈𝐸′

𝑐𝑒 · 𝑥𝑒 (4a)

∑︁
𝑒∈𝛿 (𝑣)

𝑥𝑒 = 2 ∀𝑣 ∈ 𝐶′ (4b)

𝑥𝑒 ∈ {0, 1, 2, . . .} ∀𝑒 ∈ 𝐸′ (4c)

Table 1: VRPSolver’s non-default parameter values.

parameter value

RCSPhardTimeThresholdInPricing 25
RCSPmaxNumOfLabelsInEnumeration 500000
RCSPmaxNumOfEnumeratedSolutions 5000000
RCSPrankOneCutsMemoryType 0
CutTailingOffThreshold 0.015
StrongBranchingPhaseOneCandidatesNumber 100
StrongBranchingPhaseOneTreeSizeEstimRatio 0.2
StrongBranchingPhaseTwoCandidatesNumber 3
StrongBranchingPhaseTwoTreeSizeEstimRatio 0.02
GlobalTimeLimit 3600

5.2.1 Valid inequality: split cycle removal. Equation (5) excludes
solutions where the number of splits is greater than or equal to
the number of routes. Then, by Property 6, only solutions with a
split cycle are excluded. Besides, by Property 3, at least one optimal
solution is preserved.

Let 𝐸𝑟 be the set of all edges {𝑢, 𝑣} ∈ 𝐸′ such that 𝑢 and 𝑣 are
replicas of the same customer. The number of unused edges in 𝐸𝑟
(i.e., with 𝑥𝑒 = 0) provides the number of splits in the solution,
as each unused edge implies an additional route delivering to the
customer. Thus, the number of splits can be obtained through the
expression

∑
𝑒∈𝐸𝑟 (1−𝑥𝑒 ). For example, Figure 1b depicts a solution

with one split and one unused arc between the replicas of customer
4. If 𝐸𝑑 is the set of arcs incident on any deposit, then the number of
routes in the solution can be obtained by the expression

∑
𝑒∈𝐸𝑑 𝑥𝑒/2,

as each route leaves and enters a single deposit just once.

2 ·
∑︁
𝑒∈𝐸𝑟
(1 − 𝑥𝑒 ) ≤

∑︁
𝑒∈𝐸𝑑

𝑥𝑒 − 2 (5)

6 COMPUTATIONAL EXPERIMENTS
The experiments were conducted on an Ubuntu 16.04.7 LTS virtual
machine with 8 Xeon 2.13GHz cores and 4MB cache, along with
24GB RAM. The VRPSolver 0.4.1 [15] was used for the implementa-
tion, with non-default parameters listed in Table 1, and IBM ILOG
CPLEX 12.10 as the employed solver. Each replica node of graph
𝐺𝑑 , 𝑑 ∈ 𝐷 is defined as a vertex packing set and added a capacity
cut separator with a limit of𝑄 . We also assigned branching priority
to the 𝑥 variables.

The RCSP-based map decomposition method presented in Sec-
tion 5 is tested using two instance sets available in the literature for
MDSDVRP and SDVRP. The goal is to evaluate its effectiveness for
𝑘 ∈ {3, 4, 5}. In addition, the impact of adding the cuts suggested in
Section 5.2.1 to eliminate split cycles is analyzed.

Instances. Using the procedure described in Section 4.3.1, we
adapted 42 instances from [9] to 𝑘-MD-DSDVRP and 89 instances
from [1] to 𝑘-DSDVRP. None of the transformed instances had a
demand that exceeded the vehicle’s capacity.

6.1 Results
The results of the experiment are presented in Table 2, where the
column “problem” is the instance type (𝑘-DSDVRP for instances
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Table 2: Summary of results.

problem SCR solved gap gap_MDSD time

3-DSDVRP N 97.7% 0.00% 54.6% 323
3-DSDVRP Y 96.6% 0.00% 55.1% 288
3-MD-DSDVRP N 81.0% 0.00% 16.2% 828
3-MD-DSDVRP Y 81.0% 0.00% 16.2% 850
4-DSDVRP N 86.4% 0.01% 43.3% 768
4-DSDVRP Y 85.2% 0.00% 43.5% 771
4-MD-DSDVRP N 54.8% 0.02% 14.8% 2187
4-MD-DSDVRP Y 54.8% 0.04% 14.8% 2189
5-DSDVRP N 72.1% 0.03% 39.3% 1351
5-DSDVRP Y 70.9% 0.01% 39.4% 1345
5-MD-DSDVRP N 32.5% 0.03% 12.0% 2667
5-MD-DSDVRP Y 28.2% 0.07% 11.2% 2806

adapted from SDVRP and 𝑘-MD-DSDVRP for instances adapted
from MDSDVRP), column “SCR” indicates the inclusion of split
cycle removal constraints (with value ‘Y’ for yes and ‘N’ for no),
column “solved” is the proportion of solved instances, column “gap”
is the mean relative difference between the best lower and upper
bounds, column “gap_MDSD” is the mean relative difference be-
tween the best upper bound and the best reported lower bound
for the MDSDVRP, and column “time” is the mean execution time
in seconds. A time limit of 1 hour was set for each instance. The
following observations can be made:
• The number of solved instances drops quickly for 𝑘-MD-
DSDVRP as 𝑘 increases. However, it drops more slowly for 𝑘-
DSDVRP. This suggests that the search for feasible solutions
becomes more difficult as the number of depots increases.
• In all cases where a feasible solution was found, the gap was
very small (below 0.1%). This indicates that the solutions
produced are very close to being optimal.
• When the quality of the solutions was compared with the
lower bounds provided by [9] for MDSDVRP, the 𝑘-MD-
DSDVRP solution value was, on average, about 14.3% above.
This indicates that integer deliveries and the batching of
items into few batches per vehicle (3, 4 or 5) did not strongly
affect the quality of the solution. However, this average dif-
ference was greater for 𝑘-DSDVRP, reaching 54.6% for 𝑘 = 3,
but this difference decreases whenever 𝑘 increases.
• The execution time increases with the number of depots and
the value of 𝑘 , as they reflect the number of graphs and the
number of replicas per customer, respectively.
• The inclusion of split cycle constraints worsened the average
of all metrics, with a relative difference of around 30% for
the gap, and less than 2% for the other metrics.

7 CONCLUDING REMARKS
This study investigates the 𝑘-MD-DSDVRP, which is convenient
for daily logistics by organizing deliveries in batches. Properties
are derived for this problem, and a formulation and an RCSP-based
map decomposition are proposed. The experimental results show
that the proposed map decomposition finds a near-optimal feasible
solution for more than 80% of the instances for 𝑘 = 3, but this

percentage drops as 𝑘 increases. It is also possible to conclude that
the effect of grouping into batches and discrete deliveries is small
(average gap of 14.3%) for instances with multiple deposits.

Several avenues of research are opened, such as investigating
the impact of parameter 𝑘 on the effectiveness of the dynamic pro-
gramming method proposed in [8] for DSDVRP and the approach
presented in [9] for MDSDVRP. Moreover, alternative solution
transformations may provide tighter bounds than Theorem 7 for
the ratio of 𝑧 (𝑘-MD-DSDVRP) and 𝑧 (MDSDVRP). It is also worth
investigating whether the demonstration of [2] for the NP-hardness
of 3-SDVRP can be adapted to multi-depot and integer deliveries.
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1 Introduction
The field of energy-efficient scheduling has recently witnessed considerable attention and research con-
tributions (see, e.g., [1], [3]). In this paper, we consider a real-world energy-efficient machine scheduling
problem with time-dependent resource consumption functions which, to the best of our knowledge, has
never been considered previously in the related literature. The problem is inspired by an Italian company
that conducts performance tests on electric components for the automotive industry. Briefly, a collection
of tests (named jobs hereafter) must be scheduled on a set of heterogeneous machines within a given
planning horizon, discretized into time slots. Each job has a known processing time, expressed in time
slots, in which energy is consumed. The energy consumption is not assumed to be constant during the
execution of the job, but rather time-dependent and variable within its execution. In addition to this
time dependency, this consumption is also assumed to be machine-dependent. The energy required to
execute the schedule can be obtained from two different sources: (i) from photovoltaic panels available,
or (ii) buying energy from the market. If convenient, the company can also sell energy to the market.
The amount of energy captured through the panels as well as the energy prices are also considered time-
dependent, modeled as a step function over the planning horizon. The objective is to allocate a set of
jobs to a set of machines within the time horizon in such a way that the total energy cost is minimized.
We show the effectiveness of our model on a set of random instances.

2 Problem definition and mathematical model
Let J be the set of jobs, I the set of machines, and T = 0, ..., tmax the set of time slots. Every job j ∈ J
has a processing time pj and an energy consumption function ujiτ that depends on machine i ∈ I and
time slot τ = 0, ..., pj . For t ∈ T , let et denote the amount of energy obtained from the photovoltaic
panels, ct the buying cost, and st the selling price, per unit. We assume that the total net amount of
energy that the facility can process in every time slot is limited by E, this value depends on the average
consumption of the machines. For j ∈ J and t ∈ T , let Tjt = {max{0, t − pj + 1}, ..., t} be the set
of feasible starting times for job j such that its execution spans until t, independently of the machine
assigned. We define binary variables Xjit taking value one iff job j is assigned to machine i starting in
time slot t. Integer variables Ut and Vt indicate the quantity of energy bought and sold in every time
slot t ∈ T . Finally, integer variables Wjt define the quantity of energy consumed by job j in time slot t.

The ILP model reads:

min
∑

t∈T

(ctUt − stVt) (1)

s.t.
∑

i∈I

tmax−pj∑

t=0
Xjit = 1 j ∈ J (2)
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∑

j∈J

∑

τ∈Tjt

Xjiτ ≤ 1 i ∈ I, t ∈ T (3)

Wjt =
∑

i∈I

∑

τ∈Tjt

uji(t−τ)Xjiτ j ∈ J, t ∈ T (4)

∑

j∈J

Wjt = et + Ut − Vt t ∈ T (5)

et + Ut − Vt ≤ E t ∈ T (6)
Xjit = 0 j ∈ J, i ∈ I, t ∈ T \ {0, . . . , tmax − pj} (7)
Xjit ∈ {0, 1} j ∈ J, i ∈ I, t ∈ T (8)
Wjt, Ut, Vt ∈ Z+ j ∈ J, t ∈ T (9)

The objective function (1) minimizes the total energy cost (i.e., the difference between the total cost of
buying and selling energy). Constraints (2) impose that each job is scheduled exactly once. Constraints
(3) prevent processing more than one job in the same time slot on the same machine. Constraints (4)
define the energy consumption variables Wjt based on the time-dependent consumption function of each
job. Constraints (5) match the total energy consumed by the schedule with the net amount of energy
processed in each time slot t ∈ T . Constraints (6) impose the upper limit of energy in the facility in every
time slot. Constraints (7) guarantee that every job is scheduled in such a way that it will be completed
by the last time slot t = tmax, which is considered as the overall scheduling deadline. Finally, constraints
(8)-(9) define the variables domain.

3 Preliminary computational results and future research
We solve the proposed ILP model on a dataset of 30 randomly generated instances, and we compare its
performance with a Constraint Programming (CP) model. Both models are coded in Python and the
experiments are executed on a Windows 10 system equipped with an Intel Xeon Gold 6252N 2.30GHz
with 32 GB of RAM. We use Gurobi 9.5.1 for solving ILP and CPLEX 22.1.1.0 for CP. A time limit of
3600 seconds is imposed for each execution of the models. In Table 1, we report the average results on
3 groups of 10 instances of larger size. The main message from the table is that the ILP is able to find
optimal solutions for some instances up to 30 jobs, while CP struggles even for small values of |J |. Future
research aims at tackling larger instances. Noting that the ILP degrades its performance when |J | ≥ 30,
we are working on a promising matheuristic algorithm inspired by the machine-assignment fixing strategy
proposed by [2].

Table 1: Comparison of average results on ILP and CP models
Parameters ILP CP

Size #inst #opt time[s](*) #opt time[s](**) %gap(*)
|J | ≤ 10 10 10 0.78 7 1087.22 1.40%
15 ≤ |J| ≤ 20 10 9 407.28 0 T.L. 30.17%
|J| ≥ 30 10 7 616.95 0 T.L. 28.06%

∗ computed only on instances solved to optimality by ILP
∗∗ counting 3600s for instances optimal for ILP and non optimal for CP
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ABSTRACT
In this work, we enhance the analytical capabilities and overall
usability of cyber-wargames by providing a quantitative approach
for generating optimal cyber-effect courses of action in conjunction
with other kinetic courses of action. Specifically, we introduce the
Cyber-Wargame Commodity Course of Action Automated Anal-
ysis Method, which balances risk with cost. We utilize a multi-
commodity flow (MCF) formulation within a multi-objective mixed-
integer program (MO-MIP) to determine optimal courses of action
in a wargame scenario. We also assess the robustness of our optimal
course of action through sensitivity analysis.

1 INTRODUCTION
The focus of this research is to explore the implementation of cyber-
effects in wargaming. To motivate this discussion, we recall a real-
world example concerning Iran. Since 2009, Iran has executed a
continuous stream of cyber attacks targeting the United States (US)
government and private sector systems, costing western firms mil-
lions of dollars in lost business and creating a substantial financial
burden to local residents. Beginning in 2020, conflicts between the
US and Iran have consistently taken place in cyberspace. Although
the breadth remains unclear, cyberspace has become a primary bat-
tleground, providing an alternative to kinetic military action [12].
The prevalence of cyber capabilities has increased the technical
complexity of modern warfare; today’s warfare is more technologi-
cally advanced than ever and those using cyber capabilities gain an
operational advantage [11].

In previous research, [8] introduced the Wargame Commodity
Course of Action Automated Analysis Method (WCCAAM) as a
systematic procedure to aid in the course of action (COA) devel-
opment, analysis and comparison phases of the military decision-
making process (MDMP). Assuming enemy behavior is known,
along with high-reliability on information sources, WCCAAM gen-
erates an optimal COA, minimizing engagement risk subject to

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-095-0 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

successfully achieving various objectives, e.g., nullifying enemy tar-
gets.We introduce an extended version ofWCCAAM, named Cyber-
WCCAAM (C-WCCAAM), which delivers an optimal friendly COA
considering two objectives:

(1) minimize engagement risk
(2) minimize cyber-effect cost
To consider decisions related to the employment of cyber-effects

within a wargame, we utilize a mixed-integer program (MIP). C-
WCCAAM encodes cyber-effects as binary decision variables; a one
represents the use of a particular cyber-effect and a zero represents
anything otherwise. Thus, C-WCCAAM enables decisions related to
the employment of friendly forces and cyber-decisions, simultane-
ously. We note that while our application utilizes a multi-objective
formulation with two objectives, i.e., a bi-objective formulation,
there is no reason one could not include additional objectives. The
inclusion of additional objectives would be left to the decision-
maker.

We compare results generated with WCCAAM to those gener-
atedwith C-WCCAAMon a fictitious, yet plausible, scenario, adding
friendly cyber-effects into the decision space. With C-WCCAAM,
we provide a trade-off between engagement risk and cost for a cyber-
effect. Ultimately, we extend WCCAAM to incorporate multiple
cyber-effects, formulating a new modeling approach that advances
the state-of-the-art in cyber wargaming and COA development.

Section 2 of this paper provides relevant background used in
the research. Section 3 provides a detailed methodology specific to
constructing C-WCCAAM. Section 4 is dedicated to analysis results
and discussion. Section 5 concludes the paper.

2 BACKGROUND
This section provides the necessary background and foundational
concepts for C-WCCAAM, to include a brief discussion of cyber-
wargaming and WCCAAM.

2.1 Wargaming in the Cyber Realm
Historically, the US military has relied on wargaming to achieve
both short-term and long-term objectives, examples of which in-
clude naval warfare during World War II [25], the US response to
the Iraqi invasion of Kuwait during the Gulf War [4] and counterin-
surgency tactics during the Vietnam War [24]. Wargaming has a
long history as a tool for decision-makers to improve their critical
thinking and inventiveness [20]. Wargaming is also a crucial step
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in the military decision-making process [10], which enables the
construction and selection of effective COAs to achieve strategic,
operational and tactical goals [8].

Today’s warfare is marked by technological advances in infor-
mation, communication, and artificial intelligence [5]. Thus, there
is a growing demand for wargames that effectively incorporate
modern elements, i.e., specific effects, that can directly impact one’s
operational advantage. One such set of effects includes cyber-effects.
While cyber-effects might be “invisible,” they are as vital to victory
in armed conflict as kinetic effects [17]. A cyber-effect denotes an
attempt to breach the information systems of another person or
organization to gain some advantage by executing unauthorized
activities to disrupt, manipulate, or destroy opposition electronic
systems, networks or data [1]. These effects come in many forms,
e.g., phishing scams, ransomware or denial-of-service attacks, and
can cause significant financial damage, as well as damage to repu-
tation [18].

The complexity of cyber-wargames cannot be overstated. While
the behavior of the air, sea, land, and space assets is well-known in
most games, cyber-effects themselves are often abstract or misun-
derstood [15]. As a result, many decision-makers undermine rules
to implement cyber-effects in a wargame [23]. For instance, play-
ers may use a cyber-effect at any time during a cyber-wargaming
session, regardless of practical implementation. As a result, the gap
between the actual operations and simulated games often dimin-
ishes the results generated by cyber-wargaming.

Examples of effective implementation of cyber-effects inwargam-
ing include [14] and [2].

2.2 Wargaming Commodity Course of Action
Automated Analysis Method

To reduce the time required to develop, analyze and compare COAs,
[8] developed the Wargaming Commodity Course of Action Auto-
mated Analysis Method (WCCAAM). As our foundational model,
WCCAAM sets the groundwork for the extensions included in this
paper. In WCCAAM, a collection of different friendly units, identi-
fied as commodities, are utilized to confront enemy COAs. Various
commodities are dispatched from multiple locations to nullify en-
emy targets, as set out by tactical and strategic objectives, while
minimizing engagement risk to friendly forces.

WCCAAM relies on a multi-commodity flow algorithm (MCFA)
to process the directed network, made up of nodes, i.e., bases and
targets, and engagement paths; this network is derived from the
mission analysis phase of the MDMP. The MCFA outputs the opti-
mal flow of each commodity along each engagement path in the
network. This output translates to an optimal COA for a comman-
der to allocate resources to accomplish different objectives while
minimizing operational risk. These objectives can be tactical, opera-
tional or strategic in nature, e.g., achieve air superiority or eliminate
all enemy armor assets.

Formally, the mathematical formulation utilized by WCCAAM
is

min
𝑥

∑︁
(𝑖, 𝑗 )

∑︁
𝑡

𝑅𝑡𝑖 𝑗𝑥𝑡𝑖 𝑗 (1a)

subject to:
∑︁
𝑗

𝑥𝑡𝑖 𝑗 ≤ 𝑆𝑖𝑡 ∀ 𝑖 ∈ 𝑁 (1b)

∑︁
𝑖

𝑥𝑡𝑖 𝑗 ≥ 𝐷 𝑗𝑡 ∀ 𝑗 ∈ 𝑁 (1c)

𝑥𝑡𝑖 𝑗 ≥ 0 ∀ 𝑡 ∈ 𝑇, 𝑖, 𝑗 ∈ 𝑁 (1d)

where 𝑅𝑡𝑖 𝑗 is the engagement risk associated with commodity 𝑡
on engagement path (𝑖, 𝑗), 𝑥𝑖 𝑗𝑡 is a decision variable related to the
number of commodity 𝑡 sent along path (𝑖, 𝑗), 𝑆𝑖𝑡 is the supply
of commodity 𝑡 available at node 𝑖 , and 𝐷 𝑗𝑡 is the demand for
commodity 𝑡 at node 𝑗 . Demand, in this case, refers to enemy threats
that must be nullified or objectives that require certain friendly
assets to be achieved.

3 METHODOLOGY
In this section, we introduce C-WCCAAM, which includes decisions
related to the implementation of cyber-effects. We first introduce
relevant notation, then extend the formulation previously intro-
duced in Section 2 to include cyber-effect decisions.

3.1 Notation
Relevant model decision variables and parameters are shown below.

Sets:
• 𝑇 : set of friendly commodities with index 𝑡 ∈ 𝑇
• 𝑁 : set of nodes
• 𝐾 : set {0, 1} denoting non-use (0) and use (1) of cyber-effect.
• 𝐸: set of engagement paths (edges) from node 𝑖 to node 𝑗
with index set (𝑖, 𝑗) ∈ 𝐸 where 𝑖, 𝑗 ∈ 𝑁

Parameters:
• 𝑅𝑡𝑖 𝑗 : engagement risk of commodity 𝑡 sent from node 𝑖 to
satisfy demand at node 𝑗
• 𝑆𝑡𝑖 : number of commodity 𝑡 that can be sent from node 𝑖
• 𝐷𝑡 𝑗 : demand for commodity 𝑡 at node 𝑗
• 𝑃 : cyber budget
• 𝐶𝑡𝑖 𝑗 : cost of using cyber-effects for commodity 𝑡 when sent
along engagement path (𝑖, 𝑗)
• 𝜖𝑡𝑖 𝑗 : engagement risk-reduction factor for commodity 𝑡 along
engagement path (𝑖, 𝑗); value between 0 to 1

Decision Variables:
• 𝑥𝑡𝑖 𝑗0: number of commodity 𝑡 from friendly base 𝑖 sent to
nullify target 𝑗 without the use of cyber-effects
• 𝑥𝑡𝑖 𝑗1: number of commodity 𝑡 from friendly base 𝑖 sent to
nullify target 𝑗 with the use of cyber-effects
• 𝑦𝑡𝑖 𝑗 : equal to 1 when cyber-effect activated for commodity 𝑡
when engaging target 𝑗 from base 𝑖 , 0 otherwise

Engagement risks are used to determine effective engagement
paths for moving commodities to nullify targets. The higher 𝑅𝑡𝑖 𝑗 for
a given commodity-engagement path pair, the higher the potential
operational risk.

The risk-reduction factor, 𝜖𝑡𝑖 𝑗 for commodity 𝑡 on engagement
path (𝑖, 𝑗), defines the percentage of engagement-risk that can
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be eliminated through the use of a specific cyber-effect. The risk-
reduction-factor, for example, can be used tomeasure the disruption,
e.g., reduction in accuracy, of adversarial surface-to-air missile
(SAM) systems, as a result of some offensive cyber action. The
greater the risk-reduction factor, the greater the disruption to these
systems.

3.2 Cyber-WCCAAM Formulation
To consider cyber decisions when determining the optimal friendly
COA, we introduce a binary decision variable 𝑦𝑡𝑖 𝑗 to the original
WCCAAM formulation in (1). The activation of 𝑦𝑡𝑖 𝑗 comes with a
reduction in engagement risk, 𝜖𝑡𝑖 𝑗 , along engagement path (𝑖, 𝑗)
for commodity 𝑡 . We note that domains of indices are defined in
Section 3.1.

In essence, we augment the original WCCAAM formulation in
(1) with a slightly different objective function

∑︁
𝑡

∑︁
(𝑖, 𝑗 )

𝑅𝑡𝑖 𝑗𝑥𝑡𝑖 𝑗 (1 − 𝜖𝑡𝑖 𝑗𝑦𝑡𝑖 𝑗 )

︸                                ︷︷                                ︸
𝑓1

+
∑︁
𝑡

∑︁
(𝑖, 𝑗 )

𝐶𝑡𝑖 𝑗𝑦𝑡𝑖 𝑗

︸              ︷︷              ︸
𝑓2

, (2)

including an engagement risk term, 𝑓1, and a cyber-effect cost term,
𝑓2, which we aim to minimize, turning our problem into a multi-
objective one. To reduce the problem back to a single objective, we
can forgo the inclusion of 𝑓2 in the objective function and instead
add an additional cyber-budget constraint

∑︁
𝑡

∑︁
(𝑖, 𝑗 )

𝐶𝑡𝑖 𝑗𝑦𝑡𝑖 𝑗 ≤ 𝑃, (3)

thus adding a knapsack problem [19] to WCCAAM, with the objec-
tive to minimize engagement risk without exceeding a cyber budget,
denoted as 𝑃 . We note that in the context of multi-objective opti-
mization, the addition of constraint (3) is called the 𝜖-constrained
approach [16]. This approach allows for the translation of a multi-
objective function to a single-objective function. The 𝜖-constrained
approach is often used to determine Pareto-optimal solutions; this
is in contrast to, say, a weighted multi-objective function.

Unfortunately, the introduction of cyber-effect decision vari-
ables into the objective function shown in (2) transforms the linear
WCCAAM formulation into a nonlinear one, which can be time-
consuming and impractical to solve within a high-dimension prob-
lem [9]. Thus, we linearize the formulation by constructing cyber
decisions as alternating engagement paths, one associated with
cyber reinforcement, engagement path (𝑖, 𝑗, 1), and one without re-
inforcement, engagement path (𝑖, 𝑗, 0). The decision variables 𝑥𝑡𝑖 𝑗0
and 𝑥𝑡𝑖 𝑗1 are then constrained to ensure that all of commodity 𝑡 are
sent across engagement path (𝑖, 𝑗, 1) if 𝑦𝑡𝑖 𝑗 is equal to 1; otherwise,
all of commodity 𝑡 utilizing path (𝑖, 𝑗) must be sent across (𝑖, 𝑗, 0).

With the inclusion of 𝑓1 and (3), as well as the subsequent changes
to make the formulation linear, the formulation for C-WCCAMM is

min
𝑥,𝑦

∑︁
𝑡

∑︁
(𝑖, 𝑗 )

∑︁
𝑘

𝑅𝑡𝑖 𝑗𝑘𝑥𝑡𝑖 𝑗𝑘 (4a)

subject to:
∑︁
𝑗

(𝑥𝑡𝑖 𝑗0 + 𝑥𝑡𝑖 𝑗1) ≤ 𝑆𝑡𝑖 ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁 (4b)

∑︁
𝑖

(𝑥𝑡𝑖 𝑗0 + 𝑥𝑡𝑖 𝑗1) ≥ 𝐷𝑡 𝑗 ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁 (4c)
∑︁
𝑡

∑︁
(𝑖, 𝑗 )

𝐶𝑡𝑖 𝑗𝑦𝑡𝑖 𝑗 ≤ 𝑃 (4d)

𝑥𝑡𝑖 𝑗0 ≤ 𝑀 (1 − 𝑦𝑡𝑖 𝑗 ) ∀ 𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸 (4e)
𝑥𝑡𝑖 𝑗1 ≤ 𝑀𝑦𝑡𝑖 𝑗 ∀ 𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸 (4f)
𝑥𝑡𝑖 𝑗𝑘 ≥ 0 ∀ 𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾

(4g)
𝑦𝑡𝑖 𝑗 ∈ {0, 1} ∀ 𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸 (4h)

where 𝑅𝑡𝑖 𝑗0 is the engagement risk without the use of cyber-effects
across engagement path (𝑖, 𝑗) and 𝑅𝑡𝑖 𝑗1 = 𝑅𝑡𝑖 𝑗0 (1 − 𝜖𝑡𝑖 𝑗 ) is the
engagement risk with the use of cyber-effects across engagement
path (𝑖, 𝑗), all for commodity 𝑡 .

Additionally, we constrain the total cost of cyber-effects with
some cyber budget 𝑃 using constraint (4d). An alternate constraint
might instead constrain the number of cyber-effects used. For a
simplified decision space, we can utilize the constraint

𝑦𝑡𝑖 𝑗 = 𝑦𝑡 ′𝑖 𝑗 ∀ 𝑡, 𝑡 ′ ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸, (5)

which ensures that any cyber-effect activated along path (𝑖, 𝑗) is
activated for all commodities. This constraint can be added for
cyber-effects shared across commodities. We explore the addition
of constraint (5) in later sections. Constraints (4e) and (4f) enforce
the cyber-path restrictions, with𝑀 defined as a value large enough
to prevent breaking said constraints.

3.3 Assumptions
In a real-world scenario, the success of a cyber-effect is often ran-
dom [7]. The probability of a successful cyber-effect may be depen-
dent on multiple factors, e.g., enemy cyber defenses. In many cases
there is also a probability of detection, whereby to achieve a particu-
lar cyber-effect, a cyber-attack must also go undetected by enemy
forces. For our purposes, we ignore this potential unpredictability.
Examples of cyber-games utilizing these probabilistic approaches
include [6] and [21], among others.

[22] extends WCCAAM itself to deal with uncertainties related
to enemy force size. Weaknesses of disregarding the probabilistic
aspect of cyber-effects in wargames in the context of denial and
deception are described in [13]. We also require precise and reliable
information related to engagement risk, enemy force structure and
enemy action, as well as risk-reduction factors for cyber-effects.
More specifically, we require that these model inputs be known.
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Table 1: Cyber-Effect Risk-Reduction Factors

Mountain AB Plains AB Capital AB

Armor
Striker AB 0.60 0.33 0.40

Camp Kipling 0.30 0.70 0.40
Pendem IAP 0.40 0.20 0.40

Fighters
Striker AB 0.30 0.50 0.40

Camp Kipling 0.30 1.00 0.40
Pendem IAP 0.00 0.50 0.40

Infantry
Striker AB 0.60 0.20 0.83

Camp Kipling 0.50 0.40 0.50
Pendem IAP 0.67 0.20 0.20

4 APPLICATION TO OPERATIONAL
SCENARIO

In this section we introduce a modified operational scenario. We
then compare optimal COAs generated with WCCAAM and C-
WCCAAM. To further explore these optimal COAs, we also provide
sensitivity analysis for the C-WCCAAM results.

4.1 Scenario
For this work, we adjust a scenario previously used in [8] and in-
troduced in [3]. The scenario concerns two civilizations, Phoenicia
and Sumer, fighting against each other in a multi-domain conflict.
In this section, we use the terms friendly and enemy interchange-
ably with Phoenicia and Sumer, respectively. We adjust the original
scenario to include additional fighter, armor, and infantry units for
Phoenicia and Sumer.

While (4) is a general formulation, we simplify the scenario at
hand to include supply nodes and demand nodes. Phoenician bases
(Striker Air Base (AB)), Camp Kipling and Pendem International
Airpot (IAP)) have a fixed supply of various commodities, while
Sumerian targets require a certain number of dedicated Phoenician
commodities to be nullified. This scenario aims to allocate and
assign friendly commodities to eliminate all enemy targets while
optimally employing cyber-effects to minimize overall engagement
risk.

For initial exploration of the scenario of interest, we utilize the
pseudo-data shown Table 1. Cyber-effect costs are $2K, $3K and
$9K for armor, fighters and infantry, respectively. We include force
structure in Table 2 and Table 3 for Phoenician and Sumerian forces,
respectively.

Computational experiments were implemented using Python
within the base version of Google Colabratory. We utilized the
default CBC solver included in PuLP version 2.7.0.

Table 2: Phoenician Forces

Blue Striker AB Camp Kipling Pendem IAP
Armor 5 20 0
Fighters 4 2 0
Infantry 280 20 150

Table 3: Sumerian Forces

Red Mountain AB Plains AB Capital AB
Armor 10 15 0
Fighters 2 1 3
Infantry 100 50 300

4.2 Results
With the parameters stated earlier, we generate two COAs: one
constructed with WCCAAM and the other with C-WCCAAM using
a cyber budget of $50K. These COAs are shown in Table 4.

Table 4: WCCAAM and C-WCCAAM Optimal COAs

WCCAAM C-WCCAAM
Optimal Flow for Armor:
Striker AB→Mountain AB: 5
Camp Kipling→Mountain AB: 5
Camp Kipling→ Plains AB: 15

Optimal Flow for Fighters:
Striker AB→ Plains AB: 1
Striker AB→ Capital AB: 3
Camp Kipling→Mountain AB: 2

Optimal Flow for Infantry:
Striker AB→Mountain AB: 100
Striker AB→ Plains AB: 50
Striker AB→ Capital AB: 130
Camp Kipling→ Capital AB: 20
Pendem IAP→ Capital AB: 150

Total Engagement Risk: 1125

Optimal Flow for Armor:
Striker AB→Mountain AB: 5*
Camp Kipling→Mountain AB: 5*
Camp Kipling→ Plains AB: 15*

Optimal Flow for Fighters:
Striker AB→ Plains AB: 1
Striker AB→ Capital AB: 3*
Camp Kipling→Mountain AB: 2*

Optimal Flow for Infantry:
Striker AB→Mountain AB: 100*
Striker AB→ Plains AB: 30*
Striker AB→ Capital AB: 150*
Camp Kipling→ Plains AB: 20
Pendem IAP→ Capital AB: 150*
*denotes use of cyber-effect
Cyber Budget: $50K
Total Engagement Risk: 777

The optimal solution with C-WCCAAM decreased engagement
risk from 1,125 (usingWCCAAM) to 777. While this decrease can be
attributed to cyber-effect decisions, it is interesting to explore where
decisions in optimal commodity flows differ from WCCAAM, as
opposed to decreases in engagement risk due to the risk-reduction
factors associated with cyber-effects alone. We can see slight dif-
ferences between the two COAs, specifically in the deployment of
infantry to counteract enemies.

With WCCAAM, the optimal COA satisfies the demand required
by the Plains AB Infantry forces completely through infantry sup-
plied by Striker AB,while C-WCCAAMsatisfies this demand through
the use of infantry at Striker AB and Camp Kipling. WCCAAM also
uses infantry at all three bases to satisfy Capital AB Infantry de-
mand, while C-WCCAAM consolidates by using forces from Striker
AB and Pendem IAP. The optimal COA for C-WCCAAM selects
cyber-effects for forces moving from Striker AB to Capital AB In-
fantry, resulting in additional infantry sent along this engagement
path compared to the optimal WCCAAM COA. Thus, fewer in-
fantry are available to be sent to Capital AB infantry from Striker
AB, requiring Camp Kipling to send infantry.
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Figure 1: Total engagement risk with respect to cyber budget.

4.3 Sensitivity Analysis
In this section, we utilize sensitivity analysis to assess the robust-
ness of the C-WCCAAM COA shown in Table 4. Specifically, we
perturb cyber budget, cyber-effect costs and engagement risk. La-
bels for engagement paths are shown in Table 5. We note that these
path labels are the same for all friendly commodities.

Table 5: Scenario Engagement Path Labels

Path Armor Fighters Infantry
Mountain Plains Capital Mountain Plains Capital Mountain Plains Capital

Striker AB 1 2 3 4 5 6 7 8 9
Camp Kipling 10 11 12 13 14 15 16 17 18
Pendem IAP 19 20 21 22 23 24 25 26 27

We first explore trade-offs between total COA engagement risk
and cyber budget by varying the cyber budget 𝑃 , the results of
which are shown in Figure 1. Under a cyber budget constraint
formulation, C-WCCAAM achieves greater cyber-effect selection
stability at a lower cost of approximately $65K.

Figure 1 shows the relationship between the overall engagement
risk and cyber budget as 𝑃 increases. The cyber budget intervals of
constant engagement risk indicate regions that do not change the
optimal objective function value; in rare cases, the same objective
function value can result from different optimal solutions.

4.3.1 Location of Cyber-Effects vs. Cyber Budget. Cyber-effect lo-
cations may shift in response to a change in cost of executing a
cyber-attack in another location. Figure 2 shows on which paths
cyber-effects are used as the cyber budget increases. We note that,
based on Figure 2, changes to the cyber budget greatly affect the
overall optimal solution, and, unlike the reduction of engagement
risk on a single arc, does not result in predictable changes to said
solution.

4.3.2 Location of Cyber-Effects vs. Cyber Risk-Reduction Factor.
Figure 3 illustrates the changes in cyber-effect deployment location
when there is a simultaneous adjustment in the engagement risk-
reduction factor for infantry moving from Pendam IAP to engage
infantry stationed at Mountain AB, Plain AB and Capital AB. With
risk-reduction ranging from 0 to 16%, preference shifts towards
applying cyber-effects at path 7, where infantry from Striker AB
engage those at Mountain AB, and at path 27, which supports the

Figure 2: Location for cyber-effects with cyber budget of $1K-
$70K for armor (blue), fighters (gray), and infantry (red).

Figure 3: Location of cyber-effects vs. risk-reduction factor
on paths 25, 26 and 27 simultaneously.

infantry moving from Pendam IAP to confront forces at Capital
AB, in conjunction with infantry from Striker AFB engaging the
Capital AB infantry. Additionally, with a risk-reduction from 0%
to 2%, there is an initiation of cyber-effects at path 8, deploying
infantry from Striker AB to face off against those at Plains AB,
rather than deploying from Pendam IAP. However, once the risk-
reduction reaches 16% or higher, cyber-effects at paths 7, 8, and 27
are ceased, and reliance is placed solely on cyber-effects at paths
25 and 26, which involve deploying the majority of infantry from
Pendam IAP against forces at Plain AB and Capital AB.

4.3.3 Results Using Constraint (5). In this section, we explore re-
sults when we enforce shared cyber-effects using constraint (5).
We note that the use of constraint (5) allows for cyber-effects to be
utilized on paths where no commodities are sent. However, the in-
clusion or exclusion of this constraint can vary based on my factors,
e.g., decision-maker opinion, operational relevance.

Figure 4 shows the decrease in overall engagement risk as cyber
budget increases; we reach a minimum engagement risk of 749 at a
cyber budget of $179. Cyber-effects are not utilized until the cyber
budget reaches $5K. This is due to the cost associated with enabling
cyber-effects for each of the three commodities to satisfy constraint
(5); we see the largest decrease in engagement risk as the cyber
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Figure 4: Total engagement risk with respect to cyber budget
when utilizing constraint (5).

Figure 5: Location of cyber-effects vs. cyber-effect cost on
path 13 when utilizing constraint (5).

budget increases at $6K. A cyber-effect for Camp Kipling Armor
to Plains AB Armor was utilized resulting in a 0.7 engagement
risk-reduction factor along that engagement path.

Figure 5 shows how the costs of cyber-effects on blue fighters
from Camp Kipling can affect where to implement other effects.
When the cyber cost on path 13 is $3K or less, the cyber-effects
are launched at paths 5 and 13. When the cost exceeds $3K, the
cyber-effects utilized previously at paths 5 and 13 switch to paths 4
and 14.

5 CONCLUSION
With the inclusion of cyber-effects, C-WCCAAM generates a com-
prehensive, quantitative approach for wargaming scenarios to facili-
tate effective cyber-effect decision-making. Moreover, C-WCCAAM
provides a course of action for implementing cyber capabilities into
military operations, ensuring that the use of cyber assets is opti-
mized and aligned with other mission objectives.

Future work could weaken assumptions related to the certainties
associated with our model parameters, e.g., engagement risk and
cyber-effectiveness. Additionally, in our work, we assume enemy
action is known. In future work, we might instead consider a small

set of enemy COAs, each with a specific probability of occurring.
Additionally, we can use optimization techniques to react to possible
enemy actions by using C-WCCAAM in a real-world wargame,
making a C-WCCAAM application through open-source methods.

DISCLAIMER
The views expressed in this article are those of the authors and
do not reflect the official policy or position of the United States
Air Force, United States Department of Defense, or United States
Government.
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We consider two neighboring generalizations of the classical bin packing problem: the temporal bin pack-
ing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the
task is to arrange a set of given jobs, characterized by a resource consumption and an activity window,
on ho- mogeneous servers of limited capacity. To keep operational costs but also energy consumption
low, TBPP is concerned with minimizing the number of servers in use, whereas TBPP-FU additionally
takes into ac- count the switch-on processes required for their operation. Either way, challenging integer
optimization problems are obtained, which can differ significantly from each other despite the seemingly
only marginal variation of the problems. In the literature, a branch-and-price method enriched with many
preprocessing steps (for TBPP) and compact formulations (for TBPP-FU), benefiting from numerous
reduction methods, have emerged as, currently, the most promising solution methods. In this paper,
we introduce, in a sense, a unified solution framework for both problems (and, in fact, a wide variety
of further interval scheduling applications) based on graph theory. Any scientific contributions in this
direction failed so far because of the exponential size of the associated networks. The approach we present
in this article does not change the theoretical exponentiality itself, but it can make it controllable by clever
construction of the resulting graphs. In particular, for the first time all classical benchmark instances
(and even larger ones) for the two problems can be solved –in times that significantly improve those of
the previous approaches.
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Instantaneous and limiting behavior of an n-node blockchain
under cyber attacks from multiple hackers
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We investigate the instantaneous and limiting behavior of an n-node blockchain which is under continuous
monitoring of the IT department of a company but faces non-stop cyber attacks from multiple hackers.
The blockchain is functional as far as no data stored on it has been changed, deleted, or locked. Once the
IT department detects the attack from the hacker, it will immediately re-set the blockchain, rendering all
previous efforts of the hacker in vain. The hacker will not stop until the blockchain is dysfunctional. When
the hacking times and detecting times follow arbitrary distributions, we derive the limiting functional
probability, instantaneous functional probability, and mean functional time of the blockchain. We also
show that all these quantities are increasing functions of the number of nodes, substantiating the intuition
that the more nodes a blockchain has, the harder it is for a hacker to succeed in a cyber attack. In
particular, this result formalizes the intuition that “a blockchain is safer than a single computer” for the
first time in the literature. In addition, we argue that this result does not mean a firm should design a
blockchain with as many nodes as possible by taking account of the cost of operation. We demonstrate
that there is an optimal number of nodes in a blockchain to minimize the cost of operation.
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3 NEW BINARY INTEGER PROGRAMMING FORMULATION

Identification of reaction chains in metabolic and genomic
networks for species comparison
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1 Introduction
To understand the inner workings of living organisms, biologists have started to study their biological
components separately. This approach no longer works for complex organisms and biologists are now
looking at the relations between these components by comparing the networks they forms [2].

We are interested in the joint study of metabolic and genomic networks as a follow-up to previous
work [3, 5].

We aim to identify species markers in order to compare them. The metabolic network is modelled by
a directed graph D whose vertices represent reactions and whose arcs indicate that a reaction produces a
metabolite that is the substrate of another reaction. Genomic proximity is represented by an undirected
graph G, in which two reactions are linked by an edge if they are catalyzed by enzymes coded by "close"
genes (separated by no more than δG genes apart). Note that both graphs are built on the same vertex
set.

2 Problem description and references
Let D, be a directed acyclic graph and G an undirected graph, built on the same set of vertices V =
{1, 2, . . . , n}. A DG-consistent path is a path in D, such that the subgraph of G induced by the vertices
of this path is connected. The problem One-To-One SkewGraM consists in calculating a longest DG-
consistent path.

An instance of the One-To-One SkewGraM prob-
lem: on the left G; on the right D; nodes in orange,
green, red and blue are a DG-consistant path of
length 4.

Fertin and al. [3] introduced this problem, showed that it is NP-hard in the strong sense and proposed
an exact branch-and-bound method.

More recently, the problem has been extended to the search of trails (simple but not necessarily
elementary paths), i.e., paths that can pass several times through the same vertex, but not through the
same arc, having maximum coverage [5]. Mathematical and constraint programming models [1] have
been proposed for these two variants of the problem.

3 New binary integer programming formulation
In this section we present a new formulation for the trail variant. We start with a simple unitary flow
problem (1-8) and each time the solver finds a new feasible or optimal solution we check its validity and
generate constraints (9-10) to cut this solution if not.
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maximize
∑

i∈V zi (1)
subject to

∑
j∈V soj = 1 (2)

∑
i∈V sii = 1 (3)

sov +
∑

(i,v)∈E(D) xi,v = siv +
∑

(v,j)∈E(D) xv,j , ∀v ∈ V (4)
zi ≤ sii +

∑
(i,j)∈E(D) xi,j , ∀i ∈ V (5)

zi ≥ xi,j , ∀(i, j) ∈ E(D) (6)
zi ≥ sii , ∀i ∈ V (7)
zi ≤ ∑

(i,j)∈E(G) zj , ∀i ∈ V (8)

zi + zj − ∑
v∈S zv ≤ 1 , ∀(i, j) ∈

(
V
2
)
, S ⊂ V (9)

∑
j∈V (C) soj +

∑
i∈V \V (C)

j∈V (C)
xi,j ≥ ∑

(i,j)∈E(C) xi,j − |E(C)| + 1 , ∀C ⊆ D (10)

All the variables are binary and are defined as follow zi = 1 if the node i is in the solution, xi,j = 1
if the edge (i, j) is in the solution and soj/sii = 1 if the edge between the virtual source, resp. sink, and
the node j, resp. i, is in the solution.

The goal is to maximize the number of nodes in the trail (1) that begins with the virtual source (2)
and ends with the virtual sink (3) and where the intermediary nodes have the same number of in and
out edges (4). A node is said to be in the solution if there exists an edge that begins with it (5-7).

With only these equations (1-7) we could have a trail and multiples disjoint cycles and there is no
guarantee that the induced subgraph in G is connected.

In order to solve the first problem, we force each cycle C in the solution to have an edge that enters
it (10).

To solve the second problem we force each pair of nodes that does not share an edge to have one of
the node of theirs node separator in the solution (8-9). An (i, j)-vertex separator is the minimal set of
nodes, denoted here as S , such that removing nodes from S from the graph G makes it so that there is no
path between i and j. These constraints have been shown to perform really well for similar connectivity
problems [4].

This new formulations called branch-and-check outperforms existing methods by two to three orders
of magnitude in term of the runtime (from 100-1000 to 0.1-1 seconds).

4 Conclusion and future works
Building on the success of this new model, we plan to introduce new variants of the problem by incorpo-
rating comparisons between trails of different species directly into the objective function, and by defining
a new notion of gene proximity.
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